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Differential Geometry II - Smooth Manifolds
Winter Term 2024 /2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 14 — Solutions

Exercise 1: Let F': M — N be a smooth map. Prove the following assertions:
(a) F*: QF(N) — QF(M) is an R-linear map.
(b) It holds that F*(w An) = (F*w) A (F*n).

(¢) In any smooth chart (V, (y")) on N, we have

F (lefdy“/\.../\dyi’“) — Y (wioF)d(y o F)A... Ad(y* o F).
I I

Solution:

(a) Let w,n € Q¥(N) and \,u € R. Fix p € M and let vy, ..., v, € T,M. We have

(F"(Aw + pm)) (01, o) = Aw + )y (dFp(01), - .., dFy(vy)
= Awy(dF,(v1), ..., dF,(vk)) + pip(dF,(v1), . .., dFy(vy))
= ANF'w),(v1, ... vk) + w(EFn)p(v1, ..o vg)
= (MF*w)p + u(F*n)p) (v1, ..., vp),
which implies that
(F*(A\w + pm)) ) = MEFw), + u(F )y,
and whence F*: Q¥(N) — QF(M) is an R-linear map.
(b) Assume that w resp. 7 is a k- resp. [-covector. Fix p € M and let vy, ..., vpyy € T, M.
We have

F (w Ay (01, 0k1) = (WA D) pe) (dFp (1), -, dFp(vp42))

1
= Z (sgno)w (de (Ug(l)), ..., dF, (va(k))) n (de (UU(;H_U), ..., dE, (Uo—(k+l)))

0ESk41



and

[(F" @) A (E )l (V1 -5 Ok) =
1

= W Z (Sgn U) (F*w)p (UU(1)7 s 7Ua(k:)) (F*n)p (Uo(k—i—l); cee ,Ug(k+l))
o UeSkJrl
1

~ Z (sgn o) w (dF,(Ve(n)), - - - AFp (Vo)) 1 (AFp (Vo(ir1))s - > AFy (Vorin) ) -
o 065k+l

As the two expressions agree, we conclude that F*(w A n) = (F*w) A (F*n).

(c) The assertion follows immediately from (a), (b) and Proposition 8.13.

Exercise 2:

(a) Let V be a finite-dimensional real vector space and let w!,... w* € V*. Show that
the covectors w', ..., w* are linearly dependent if and only if w! A ... Aw* = 0.

(b) Let M be a smooth n-manifold. Let w € Q¥(M) and n € QY(M). Assume that w is
closed and that 7 is exact. Show that w A n is closed and exact.

(c) Consider the smooth manifolds
M ={(u,v) e R* |u*+v* <1} and N =R>\{0},
the smooth map
F: M — N, (u,v) — (u,v,m) ,

and the differential forms

_xdyNdz+ydzNdr+ zdr Ady 9
W= (x2+y2+22)3/2 € °(N)

and dz +ydy + zd
- m(xf_{_ 52 i 22;/22 e QY(N).
(i) Compute dw and dn.
(ii) Compute w A n and n A dn.
(iii) Compute F*w and F*(dn).
(iv) Verify that d(F*w) = F*(dw).
Solution:
(a) Assume first that the covectors w',...,w" are linearly dependent. Then there exist
jedl,... kfand A, ... A, A € Rosuch that w?/ = 37, A w'. Therefore,
WAL AT AW AWTIA AW =0 AL AT A AW AT AL AW
1#]
=3 WAL AW AW AT AL AW
i#]
=0



by [Multilinear Algebra, Proposition C.25(d)].

Assume now that the covectors w!,...,w" are linearly independent. We will show
below that (the alternating k-multilinear function) 7 := w! A ... Aw* # 0. It suffices to
find vy, ..., vx € V such that n(vq,...,vx) # 0. To this end, set n = dimg V' and note that
n > k. Since w',...,w" are linearly independent elements of VV*, we can complete them to
a basis {w!, ..., w* WFL .. w"} of V* and consider subsequently the basis {vy,...,v,}
of V dual to {w’}; see (the second paragraph after) [ Multilinear Algebra, Proposition C.5].

By [Multilinear Algebra, Proposition C.25(d)] we then obtain

k

n(vy, ..., v;) = det ((w](vl))> = det (55) =1,

and thus 7 # 0, as desired.

(b) Since w is a closed k-form, we have dw = 0. Since 7 is an exact (-form, there exists
0 € Q"Y(M) such that = df, and thus dn = 0. Hence, we have

dwAn) =doAn+ (—1)fwAdy=0;
in other words, w A n is a closed (k + ¢)-form. Moreover, since
dwAl) =don+ (-1 wnd)=(—1)"wAn,

we infer that
wAn=d((-1)*wAb);

in other words, w A 7 is an exact (k + ¢)-form.

(c)(i) Using the facts that
de Ndx =dyNdy =dzNdz=0 (1)

and
de Ndy Ndz = dy Ndz Ndx = dz N\ dx A dy, (2)

we compute that

x
dw = d ((xQ oy + 22)32

z
d((x2+y2+z2)3/2) Adzx N dy

0 x 0 Y
= — dx Ndy N\ d — dyNdzNd
Ox ((x2+y2+z2)3/2> TAay N Z+8y ((x2+y2+z2)3/2) yAazhar+

0 x
— d d d
+8z ((:}c2+y2+z2)3/2> FAdz A dy

Y
(332 +y2 +22)3/2

)/\dy/\dz+d( )/\dz/\d:c—l—

(12 + y2 + 22)5/2

—22% + % + 22

= Pt ) de Ndy N\ dz +
—222 + 22 4+ 2
(x2+y2+22)5/2

de Ndy Ndz +

dx Ndy N\ dz

=0.



Consider now the smooth function

f: N>R, (z,y,2) = Va2 +y>+ 22

and observe that n = df. Therefore,
dn = 0.

(c)(ii) Using (1) and (2) we compute that
2 2

Y
dy Ndz N\d
2 Y < m+(I2+y2+22)

xT
wAn= dz Ndx N\ dy +

U (l’2+y2+22) 2 < € Y
22

* (22 4+ y2 + 22)

> dr ANdy Ndz

1

Moreover, since dn = 0 by (c)(i), we infer that

nAdn=0.

(c)(iiil) Since
du Ndu=dvANdv=0, duNdv=—dvAdu
and

d(m) _

we compute that

—*du—;dv,
V1—u?2—? V1—u2—v?

2 2

F*w:Ldv/\du—kLdv/\du—i—\/l—uz—vzdu/\dv
V1—u?—v2 V1—u?2—v2
1
= ——+———du AN dv.

V1—u?—?

Moreover, since dn = 0 by (c)(i), we have

F*(dn) = 0.

(c)(iv) Note that both d(F*w) and F*(dw) are 3-forms on the 2-dimensional manifold M.
Hence they are both equal to 0; in particular, we have

d(F*w) = F*(dw) = 0.

Exercise 3: Let (r,0) be polar coordinates on the right half-plane H = {(z,y) | z > 0}.
Compute the polar coordinate expression for the smooth 1-form = dy —y dz € Q'(R?) and
for the smooth 2-form dz A dy € Q?(R?).

[Hint: Think of the change of coordinates (z,y) = (rcosf,rsinf) as the coordinate
expression for the identity map of H, but using (7, 0) as coordinates for the domain and
(x,y) as coordinates for the codomain.]



Solution: We have

Id*(x dy — ydx) = rcos@d(rsinf) — rsin @ d(r cos )
= rcosf(sinfdr + rcosdf) — rsinf(cos 6 dr — rsin 6 df)
= 1% cos® 0df + r*sin® 0 db
=7r2df

and

Id*(dx A dy) = d(rcos @) A d(rsin )
= (cosOdr —rsinfdf) A (sinf dr + rcos 6 do)
=rcos’Odr Adf — rsin®df A dr
=rdr ANd0,

since dr Adr =0=d0 Ndf and dr A df = —df A dr.

Exercise 4: Consider the smooth 2-form
w=zdy Ndz+ydzNdx+ zdx ANdy

on R? with standard coordinates (z,y, 2).

(a) Compute w in spherical coordinates for R? defined by

(z,y,2) = (psinpcosh, psin psin b, pcos p).

(b) Compute dw in spherical coordinates.

(c) Consider the inclusion map ¢: S* < R? and compute the pullback t*w to S?, using
coordinates (p, @) on the open subset where these coordinates are defined.

(d) Show that ¢*w is nowhere zero.

Solution:

(a) We have

dr = d(psingcosf) = sinpcosf dp + pcosgcosf dp — psinpsinb db,
dy = d(psinpsinf) = sin psinf dp + pcos psin@ dp + psinp cosd db,
dz = d(pcosp) = cosp dp — psing dy.

Therefore, one computes that

dy A dz = p?sin® pcos do A df + psinpcospcos di A dp — psiné dp A de,
dz A dx = p*sin? siné dp A df + psin p cos psinf df A dp + pcosb dp A de,
dx A dy = p*cos psing dp A df — psin® ¢ df A dp.



By combining these expressions, we thus obtain

w=xdyNdz+ydz ANdr + zdx AN dy
= (p®sin® p cos? O + p*sin® psin® § + p? cos® @ sin ) dp A db
+ (p* sin? p cos p cos® O + p? sin® @ cos psin® @ — p? sin® g cos ) dO A dp

N J/
-~
=0

+ (—p? sin @ sin @ cos § + p? sin wsin @ cos ) dp A d

J/

-~
=0

= p*sin ¢ (sin? ¢ cos® § + sin? psin? O + cos® ) dip A df

(.

1
= p*sinp dp A df.
(b) We have
d(p3 sin gp) = 3p?sing dp + p* cos o do,

S0 we obtain
dw = d(p3 singo) ANdp Adf = 3p*sing dp A dp A db.

Another way to compute dw would be to note that
dw=dx Ndy Ndz +dy Ndz Ndx + dz \Ndx N\ dy = 3dx Ady A dz.

For the standard top differential form dx A dy A dz on R?, a change of coordinates induces
a factor given by the determinant of the Jacobian. You may remember or look up (or
compute) that the determinant of the Jacobian of spherical coordinates is p?sin ¢, so we
obtain dw = 3p*sing dp A dp A df as well.

(¢) We just have to put p = 1 in the result of part (a). To justify precisely what is
going on, let us spell this out in detail. Note that the change into spherical coordinates
is provided by the diffeomorphism

G:Rop x (0,7) x (0,27) — U C R?
(p,p,0) — (psinpcosh, psin psin b, pcos p),

where V' = {(z,y,2) | v # 0}. So what we computed above is G*(w|y). Note that
spherical coordinates on the sphere are provided by the diffeomorphism

F:(0,7) % (0,27) = V C§?
(p,0) — (sinpcosb,sinpsin b, cos ¢),
where U = S? N V. If we denote by j the embedding
j:(0,m) x (0,2m) — Rog x (0,7) x (0,27)
(0,0) = (1,9,0),
then this is precisely set up so that Goj = 1o F. What we want to compute is F*1*(wly),
and this is given by
F' wly) = (Lo F) (wlv) = (G oj) (wlv) = 7°G (wlv)
= j*(p*sinp dip A d6)
=siny dp A df.



(d) As sing # 0 for ¢ € (0,7), we infer that F*.*(w|y) = sing dp A df is nowhere
vanishing on (0,7) x (0,27). As F'is an isomorphism, we obtain that *(w|yv) = (*w)|v
is nowhere vanishing on U, i.e., at the points of S? where y # 0. To conclude, note that
we can do the exact same calculations for spherical coordinates around the z- and y-axes,
and obtain that then (*w is non-zero also at all points where z # 0 resp.  # 0. Hence,
t*w is nowhere zero.

Exercise 5:

(a) Ezterior derivative of a smooth 1-form: Show that for any smooth 1-form w and any
smooth vector fields X and Y on a smooth manifold M it holds that

dw(X,Y) = X (w(Y)) = Y (w(X)) —w([X,Y]).

(b) Let M be a smooth n-manifold, let (E;) be a smooth local frame for M and let (%) be
the dual coframe. For each i, denote by b;k the component functions of the exterior
derivative of " in this frame, and for each j, k, denote by ¢, the component functions
of the Lie bracket [E}, Ej]:

de' =Y biped Ae¥ and (B By = iy E;.

i<k
Show that bl, = —c.

Solution:

(a) Let p € M be arbitrary. Choose local coordinates (U, (z')) around p and write

w:ZCid:ci, X:Zfi%, Y:Zgi%.
Then

[do(X,Y)](p) = (dw)y (X5, Yy) = D _[(der)y A (d2'),](X,, V)

i

= > [(dep(Xp) (da)y (V) = (der)y(¥;) (d'),(X,)]
= 3 9011501 5 0) ~ 50550

On the other hand, we have

(X (wM)] () = Y _[X(cigl(p) = Y 9:(m)X()](p) + c:(p)[X (90)](p)

) 7

=5 |60 501550 + a0 5 )]

7’7‘7




and

Y (w(X))] (0) =D [V (cif)lp) = > L)Y (e)l(p) + ()Y (f:))(p)

) %

= Z [fi(p)gj (p)%(p) +¢i(p)g; (p)%(p)}
as well as
(X YD)] () = [Z D) 130) 5% () — €0y ) o <p>] ,

where we used [Ezercise Sheet 11, Ezercise 4(a)]. By combining these expressions, we
obtain

= [dw (X, Y))(p) + [w([X. V)] ().

(b) Let us compute de*(E;, Ey) for some 14, j, k with j < k. By part (a) we obtain
d'(E;, Ey,) = Ej(¢'(Ex)) — Ex(e'(E))) — €' ([E;, Ex])
= Fj(0ir) — Ex(0ij) =i = —Cly,
) =0

where in the last step we used that a derivation evaluated at a constant function gives 0.
On the other hand, we have

de'(Ej, Ey) = Z D [Ej/ A 5% (Ej, Bx) = by,
j/<k/

where we used that &' A e = £U"F); see [Multilinear Algebra, Lemma C.20(c) and
Proposition C.25(c)]. Hence, bl = —c%.

Remark.

(1) Ezercise 5(b) shows that the exterior derivative is in a certain sense dual to the Lie
bracket. In particular, it shows that if we know all the Lie brackets of basis vector
fields in a smooth local frame, we can compute the exterior derivatives of the dual
covector fields, and vice versa.



(2) There is an analogue of Ezercise 5(a) for smooth k-forms as well, which is referred to
as the invariant formula for the exterior derivative in the literature. Specifically, if
w € QF(M), then for any X,..., X;, € X(M) it holds that

do(X1,.. Xen) = Y (1) X (WX, Xy, X))
1<i<k+1

+ Z (—1>i+jW([Xi,Xj],X1,...,Xi,...,Xj,...,XkJrl),

1<i<j<k+1

where the hats indicate omitted arguments. It is worthwhile to mention that the above
formula can be used to give an invariant definition of d, as well as an alternative proof
of Theorem 8.25 on the existence, uniqueness, and properties of d.



