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Exercise Sheet 13 – Solutions

Exercise 1 (Smoothness criteria for covector fields): Let M be a smooth manifold and
let ω : M → T ∗M be a rough covector field on M . Prove that the following assertions are
equivalent:

(a) ω is smooth.

(b) In every smooth coordinate chart the component functions of ω are smooth.

(c) Every point ofM is contained in some smooth coordinate chart in which ω has smooth
component functions.

(d) For every smooth vector field X on M , the function ω(X) : M → R is smooth on M .

(e) For every open subset U ⊆ M and every smooth vector field X on U , the function
ω(X) : U → R is smooth on U .

[Hint: Try proving (a) =⇒ (b) =⇒ (c) =⇒ (a) and (c) =⇒ (d) =⇒ (e) =⇒ (b).]

Solution:

(a) =⇒ (b): Suppose that ω is smooth. Let
(
U, (xi)

)
be a smooth chart for M . This

gives a corresponding smooth chart
(
π−1(U),

(
(xi), (ξi)

))
for T ∗M . It is characterized by

sending ξiλ
i|p to

(
(xi(p)), (ξi)

)
, where p ∈ U and (λi|p) is the dual basis of (∂/∂xi|p). By

definition, the component functions of ω with respect to the smooth chart
(
U, (xi)

)
are

the functions ωi : U → R determined by

ωp =
∑
i

ωi(p) · λi|p , p ∈ U.

Therefore, the coordinate representation ω̂ of ω with respect to these charts on U and
π−1(U) is the map

ω̂ : Û → Û × Rn

x̂ 7→
(
x̂,
(
ωi ◦ φ−1(x̂)

))
.
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Since by hypothesis ω, and thus also ω̂, is smooth, we conclude that each ωi ◦ φ−1, and
thus ωi itself, is smooth.

(b) =⇒ (c): Immediate.

(c) =⇒ (a): By hypothesis, there exists an atlas {(Uα, φα)}α of M such that for all
α, the covector field ω has smooth component functions in each chart (Uα, φα). By the
computation in (a) ⇒ (b) we see that the coordinate representation of ω with respect to
the smooth charts

(
Uα, φα

)
and

(
π−1(Uα), (φα, (ξα,i)

)
is smooth. Hence, ω is smooth by

[Exercise Sheet 3, Exercise 1(b)].

(c) =⇒ (d): Let {(Uα, φα)}α be an atlas for which ω has smooth component functions
ωα,i, and write φα = (xiα). Let Xα,i be the component functions of X on Uα, which are
smooth by Proposition 7.2. Then, for any p ∈ Uα, we have

ω(X)(p) = ωp(Xp) =
∑
i

∑
j

ωα,i(p)Xα,j(p)λ
i|p

(
∂

∂xjα

∣∣∣∣
p

)
︸ ︷︷ ︸

=δij

=
∑
i

ωα,i(p)Xα,i(p) ,

as (λi|p) is the dual basis of (∂/∂xiα|p), and since all functions ωα,i and Xα,i are smooth, we
infer that ω(X)|Uα is smooth. As {(Uα, φα)}α is an atlas for M , it follows from [Exercise
Sheet 3, Exercise 2(a)] that ω(X) is smooth.

(d) =⇒ (e): Let U be an open subset of M and let X be a smooth vector field on U .
Let p ∈ U and let (Up, φp) be a smooth chart for M containing p. Let Vp ⊆ Up be the
preimage of a compact ball centered at φp(p), and let Vp be its interior. Let ψp : M → R
be a smooth bump function with support in Up such that ψp|Vp

≡ 1. Then the map
ψpX : M → TM defined by

(ψpX)q =

{
ψp(q)Xq if q ∈ U,

0 otherwise,

is a smooth global vector field; indeed, it is smooth on U and on M \ supp(ψp) (as it is
0 on this set), which is an open cover of M by construction. Hence, ω(ψpX) is smooth
by assumption. But then ω(X)|Vp = ω(ψpX)|Vp is smooth as well by [Exercise Sheet 3,
Exercise 2(b)]. We conclude that there is an open cover {Vp}p∈U of U such that ω(X)|Vp

is smooth for all p ∈ U , and thus ω(X) : U → R is smooth on U by [Exercise Sheet 3,
Exercise 2(a)].

(e) =⇒ (b): Let
(
U, (xi)

)
be a smooth chart forM and let ωi be the component functions

of ω with respect to this chart. By applying (e) to the smooth vector field ∂/∂xi : U → R,
we infer that ω(∂/∂xi) is smooth. But since for any p ∈ U we have

ω

(
∂

∂xi

)
(p) =

∑
j

ωj(p) · λj|p
(
∂

∂xi

∣∣∣
p

)
︸ ︷︷ ︸

=δji

= ωi(p),

and hence ω(∂/∂xi) = ωi, we deduce that the component functions ωi of ω on
(
U, (xi)

)
are smooth.
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Remark. The above arguments for (d) =⇒ (e) and (e) =⇒ (b) yield in particular the
following: two (potentially rough) covector fields ω, ω′ : M → T ∗M are equal if and only
if ω(X) = ω′(X) for all smooth global vector fields X on M .

Exercise 2 (Properties of the differential): Let M be a smooth manifold and let f, g ∈
C∞(M). Prove the following assertions:

(a) If a, b ∈ R, then d(af + bg) = a df + b dg.

(b) d(fg) = f dg + g df .

(c) d(f/g) = (g df − f dg)/g2 on the set where g ̸= 0.

(d) If J ⊆ R is an interval containing the image of f and if h : J → R is a smooth
function, then d(h ◦ f) = (h′ ◦ f) df .

(e) If f is constant, then df = 0. Conversely, if df = 0, then f is constant on each
connected component of M .

Solution:

(a) Fix a, b ∈ R and p ∈M . For any v ∈ TpM we have

d(af + bg)p(v) = v(af + bg) = a v(f) + b v(g)

= a dfp(v) + b dgp(v)

=
(
a dfp + b dgp

)
(v).

Therefore,
d(af + bg)p = a dfp + b dgp,

which yields the statement, since p ∈M was arbitrary.

(b) Fix p ∈M . For any v ∈ TpM we have

d(fg)p(v) = v(fg) = f(p) vg + g(p) vf

= f(p) dgp(v) + g(p) dfp(v)

=
(
f(p) dgp + g(p) dfp

)
(v).

Therefore,
d(fg)p = f(p) dgp + g(p) dfp,

which yields the statement, since p ∈M was arbitrary.

Note: We may also argue somewhat differently as follows (the same also applies for
(a) above, and this method will be used in (c) below as well): Let X be a smooth global
vector field on M . For any p ∈M we have

d(fg)(X)(p) = Xp(fg) = f(p)Xp(g) + g(p)Xp(f) = (f dg)(X)(p) + (g df)(X)(p).

Therefore,
d(fg)(X) = (f dg)(X) + (g df)(X)
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for any smooth global vector field X, which yields the statement.

(c) Let U :=M \ g−1(0). Let X be a smooth vector field on U . Given p ∈ U , note that

0 = Xp(1) = Xp

(
g · (1/g)

)
= g(p)Xp(1/g) +

(
1/g(p)

)
Xp(g),

which yields
Xp(1/g) = −Xp(g)/

(
g(p)2

)
.

Therefore,

d(1/g)(X)(p) = Xp(1/g) = −Xp(g)/
(
g(p)2

)
=
(
−(dg)/g2

)
(X)(p)

for all X and p, which implies that d(1/g) = −(dg)/g2. It follows that

d(f/g)
(b)
= (1/g) df + f d(1/g) = (1/g) df − (f/g2) dg = (g df − f dg)/g2,

as desired.

(d) Fix p ∈M and v ∈ TpM . Write v = vi ∂
∂xi

∣∣
p
and note that

∂

∂xi

∣∣∣∣
p

(h ◦ f) = ∂(h ◦ f)
∂xi

(p) = h′
(
f(p)

) ∂f
∂xi

(p) = h′
(
f(p)

) ∂
∂xi

∣∣∣∣
p

f

by the chain rule. Therefore,

d(h ◦ f)p(v) = v(h ◦ f) =

(
vi

∂

∂xi

∣∣∣∣
p

)
(h ◦ f)

= vih′
(
f(p)

) ∂
∂xi

∣∣∣∣
p

f = h′
(
f(p)

)
vf

= (h′ ◦ f)(p) dfp(v).

Since v ∈ TpM was arbitrary, we infer that d(h ◦ f)p = (h′ ◦ f)(p) dfp, and since p ∈ M
was arbitrary, we conclude that d(h ◦ f) = (h′ ◦ f) df .

Note: We may alternatively argue as follows: Let X be a smooth global vector field
on M and let p ∈ M be arbitrary. To avoid confusion, denote by dfp : TpM → Tf(p)R
the differential of f at p ∈ M as a linear map between tangent spaces, and by dcovf
the covector field determined by f . They are related as follows: for every p ∈ M and
v ∈ TpM , we have

dcovfp(v) = [dfp(v)](IdR).

This follows from the fact that the natural identifaction of Tf(p)R with R is provided by
evaluation at IdR. Therefore, if p ∈M and v ∈ TpM are arbitrary, then we have

dcov(h ◦ f)p(v) = [d(h ◦ f)p(v)](IdR) =
[
dhf(p)

(
dfp(v)

)]
(IdR)

= h′
(
f(p)

)
· [dfp(v)](IdR) = h′

(
f(p)

)
· dcovfp(v),
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where we used that for any t ∈ J , the differential dht : TtJ → Th(t)R is the map given by
scalar multiplication with h′(t). As p ∈M and v ∈ TpM were arbitrary, we conclude that
dcov(h ◦ f) = (h′ ◦ f) dcovf .

(e) In view of the fact that the differential of f as defined in Chapter 3 (i.e., as a linear
map dfp : TpM → TpR) and as defined in Chapter 8 (i.e., as a linear map dfp : TpM → R)
is the same object (due to the canonical identification between R and TpR), the assertion
is simply a special case of [Exercise Sheet 5, Exercise 5(b)].

Exercise 3:

(a) Derivative of a function along a curve: Let M be a smooth manifold, γ : J → M be
a smooth curve, and f : M → R be a smooth function. Show that the derivative of
f ◦ γ : J → R is given by

(f ◦ γ)′(t) = dfγ(t)
(
γ′(t)

)
.

(b) Let M be a smooth manifold and let f ∈ C∞(M). Show that p ∈ M is a critical
point of f if and only if dfp = 0.

Solution:

(a) Using the definitions, for any t ∈ J we have

dfγ(t)
(
γ′(t)

)
= γ′(t) f = dγ

(
d

dt

∣∣∣∣
t

)
(f) =

d

dt

∣∣∣∣
t

(f ◦ γ) = (f ◦ γ)′(t).

(b) Since the differential dfp is a linear map with codomain the 1-dimensional R-vector
space TpR ∼= R, it is surjective if and only if there exists v ∈ TpM \ {0} such that
dfp(v) ∈ R \ {0} ∼= TpR \ {0}. Therefore, p ∈ M is a critical point of f if and only if dfp
is not surjective if and only if dfp = 0 (i.e., the zero linear map).

Remark. Let M be a smooth manifold and let f ∈ C∞(M). If γ is a smooth curve in M ,
then we have two different meanings for the expression (f ◦γ)′(t). On the one hand, f ◦γ
can be interpreted as a smooth curve in R, and thus (f ◦ γ)′(t) is its velocity (vector)
at the point (f ◦ γ)(t), which is an element of the tangent space T(f◦γ)(t)R. [Exercise
Sheet 4, Exercise 5] shows that this tangent vector is equal to dfγ(t)

(
γ′(t)

)
, thought of

as an element of T(f◦γ)(t)R. On the other hand, f ◦ γ can also be considered simply as a
real-valued function of one real variable, and then (f ◦γ)′(t) is just its ordinary derivative.
Exercise 4(a) above shows that this derivative is equal to dfγ(t)

(
γ′(t)

)
, thought of as a real

number.

Exercise 4: Let M be a smooth manifold, let S be an immersed submanifold of M , and
let ι : S ↪→ M be the inclusion map. For any f ∈ C∞(M), show that d

(
f |S
)
= ι∗(df).

Conclude that the pullback of df to S is zero if and only if f is constant on each connected
component of S.
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Solution: Since f |S = f ◦ ι, by Proposition 8.13 we obtain

ι∗(df) = d(f ◦ ι) = d
(
f |S
)
.

It follows from the above relation and from Exercise 2(e) that ι∗(df) = 0 if and only if f
is constant on each connected component of S.

Exercise 5:

(a) Consider the smooth map

F : R2 → R2, (s, t) 7→ (st, et)

and the smooth covector field

ω = xdy − ydx ∈ X∗(R2).

Compute F ∗ω.

(b) Consider the function

f : R3 → R, (x, y, z) 7→ x2 + y2 + z2

and the map

F : R2 → R3, (u, v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.1

Compute F ∗(df) and d(f ◦ F ) separately, and verify that they are equal.

(c) Consider the smooth manifold

M :=
{
(x, y) ∈ R2 | x > 0

}
and the smooth function

f : M → R, (x, y) 7→ x

x2 + y2
.

Compute the coordinate representation for df and determine the set of all points
p ∈M at which dfp = 0.

(d) Let M be a compact, connected, smooth manifold of dimension n > 0. Show that
every exact smooth covector field on M vanishes at least at two points of M .

Solution:

(a) We have

F ∗ω = (x ◦ F ) d (y ◦ F )− (y ◦ F ) d (x ◦ F )
= (st) d (et)− (et) d (st)

= stet dt− et(s dt+ t ds)

= (−tet) ds+ set(t− 1) dt.

1Note that F is the inverse of the stereographic projection from the north pole N ∈ S2; see [Exercise
Sheet 2, Exercise 6].

6



(b) On the one hand, by Exercise 2 we obtain

df = d(x2 + y2 + z2) = 2x dx+ 2y dy + 2z dz,

and since

d (x ◦ F ) = d

(
2u

u2 + v2 + 1

)
=

2(u2 + v2 + 1)− 4u2

(u2 + v2 + 1)2
du+

−4uv

(u2 + v2 + 1)2
dv,

d (y ◦ F ) = d

(
2v

u2 + v2 + 1

)
=

−4uv

(u2 + v2 + 1)2
du+

2(u2 + v2 + 1)− 4v2

(u2 + v2 + 1)2
dv,

d (z ◦ F ) = d

(
u2 + v2 − 1

u2 + v2 + 1

)
=

4u

(u2 + v2 + 1)2
du+

4v

(u2 + v2 + 1)2
dv,

we compute that

F ∗(df) = 2(x ◦ F ) d (x ◦ F ) + 2(y ◦ F ) d (y ◦ F ) + 2(z ◦ F ) d (z ◦ F )

= 2
2u

u2 + v2 + 1
d

(
2u

u2 + v2 + 1

)
+ 2

2v

u2 + v2 + 1
d

(
2v

u2 + v2 + 1

)
+

+ 2
u2 + v2 − 1

u2 + v2 + 1
d

(
u2 + v2 − 1

u2 + v2 + 1

)
=

(
8u(u2 + v2 + 1)− 16u3

)
− 16uv2 + 8u(u2 + v2 − 1)

(u2 + v2 + 1)3
du+

+
−16u2v +

(
8v(u2 + v2 + 1)− 16v3

)
+ 8v(u2 + v2 − 1)

(u2 + v2 + 1)3
dv

= 0.

On the other hand, we have

(f ◦ F )(u, v) =
(

2u

u2 + v2 + 1

)2

+

(
2v

u2 + v2 + 1

)2

+

(
u2 + v2 − 1

u2 + v2 + 1

)2

=
(u2 + v2 + 1)2

(u2 + v2 + 1)2

= 1,

whence d(f ◦ F ) = 0 according to Exercise 2(e).

(c) Given a point p = (x0, y0) ∈ M , the differential dfp of f at p is represented in
coordinates (x, y) by the row matrix Dp whose components are the partial derivatives of
f at p = (x0, y0); namely,

Dp =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
=

(
y20 − x20

(x20 + y20)
2
,

−2x0y0
(x20 + y20)

2

)
.

In view of Exercise 3(b), to find the points p ∈ M at which dfp = 0, we have to solve
the system

(Σ) :

{
y2 − x2 = 0

−2xy = 0
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under the restriction that x > 0. It is straightforward to see that (Σ) has no solutions
(x, y) ∈M ; in other words,

{p ∈M | dfp = 0} = ∅.

(d) Let ω ∈ X∗(M) be exact and let f ∈ C∞(M) such that ω = df . Since M is compact,
f attains its minimum at a point p ∈ M and its maximum at a point q ∈ M , and since
df is represented in coordinates by the gradient of (the coordinate representation of) f ,
we have dfp = 0 = dfq. Note also that if p = q, then f is constant, and thus df = 0 by
Exercise 2(e).
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