CPrE]
-
=l
Differential Geometry II - Smooth Manifolds
Winter Term 2024 /2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 13 — Solutions

Exercise 1 (Smoothness criteria for covector fields): Let M be a smooth manifold and
let w: M — T*M be a rough covector field on M. Prove that the following assertions are
equivalent:

(a) w is smooth.
(b) In every smooth coordinate chart the component functions of w are smooth.

(c) Every point of M is contained in some smooth coordinate chart in which w has smooth
component functions.

(d) For every smooth vector field X on M, the function w(X): M — R is smooth on M.

(e) For every open subset U C M and every smooth vector field X on U, the function
w(X): U — R is smooth on U.

[Hint: Try proving () = (b)) = (¢) = (a) and (¢) = (d) = (e) = (b)/]

Solution:

(a) = (b): Suppose that w is smooth. Let (U, (z*)) be a smooth chart for M. This
gives a corresponding smooth chart (7=1(U), ((z?), (&))) for T*M. It is characterized by
sending &M, to ((2°(p)), (&), where p € U and ()\;|,) is the dual basis of (9/0z'],). By
definition, the component functions of w with respect to the smooth chart (U, (:L’Z)) are
the functions w;: U — R determined by

wp = Zwi(p) N, peU.

Therefore, the coordinate representation @ of w with respect to these charts on U and
7~ Y(U) is the map



Since by hypothesis w, and thus also @, is smooth, we conclude that each w; o ¢!, and
thus w; itself, is smooth.

(b) = (c): Immediate.

(¢) = (a): By hypothesis, there exists an atlas {(Ua, ¥a)}ta of M such that for all
a, the covector field w has smooth component functions in each chart (U,, p,). By the
computation in (a) = (b) we see that the coordinate representation of w with respect to
the smooth charts (Ua, gpa) and (ﬂfl(Ua), (Pa (gw)) is smooth. Hence, w is smooth by
[Ezercise Sheet 3, Exercise 1(b)].

(¢) = (d): Let {(Ua, ¥a)}a be an atlas for which w has smooth component functions
Wa,i, and write @, = (z!). Let X,; be the component functions of X on U,, which are
smooth by Proposition 7.2. Then, for any p € U,, we have

w(X)(p) = ZZwm Az|p(
h,_/

) e

:5;

as (\'],) is the dual basis of (9/9z",|,), and since all functions w,; and X, ; are smooth, we
infer that w(X)|y, is smooth. As {(Us, ¥a)}e is an atlas for M, it follows from [Exerczse
Sheet 3, Ezercise 2(a)] that w(X) is smooth.

(d) = (e): Let U be an open subset of M and let X be a smooth vector field on U.
Let p € U and let (U, ¢,) be a smooth chart for M containing p. Let Vp C U, be the
preimage of a compact ball centered at ¢,(p), and let V,, be its interior. Let ¢,: M — R
be a smooth bump function with support in U, such that wp\vp = 1. Then the map
Y, X: M — TM defined by

), = {wpm , ifqel,

0 otherwise,

is a smooth global vector field; indeed, it is smooth on U and on M \ supp(¢,) (as it is
0 on this set), which is an open cover of M by construction. Hence, w(¢,X) is smooth
by assumption. But then w(X)|y, = w(¥X)|y, is smooth as well by [Ezercise Sheet 3,
Ezercise 2(b)]. We conclude that there is an open cover {V, } ey of U such that w(X)ly,
is smooth for all p € U, and thus w(X): U — R is smooth on U by [Ezercise Sheet 3,
FEzercise 2(a).

() = (b): Let (U, (z*)) be a smooth chart for M and let w; be the component functions
of w with respect to this chart. By applying (e) to the smooth vector field 9/0x%: U — R,
we infer that w(9/0z") is smooth. But since for any p € U we have

) = wi(p);

0
J
(axz) ij Ny (axi »
——

=57

and hence w(9/0z") = w;, we deduce that the component functions w’ of w on (U, (z*))
are smooth.



Remark. The above arguments for (d) = (e) and (¢) = (b) yield in particular the
following: two (potentially rough) covector fields w,w’: M — T*M are equal if and only
if w(X) = w/'(X) for all smooth global vector fields X on M.

Exercise 2 (Properties of the differential): Let M be a smooth manifold and let f, g €
C>®(M). Prove the following assertions:

)

) d(fg) = fdg+gdf.

(c) d(f/g) = (gdf — fdg)/g* on the set where g # 0.
)

If J C R is an interval containing the image of f and if h: J — R is a smooth
function, then d(ho f) = (k' o f)df.

(e) If f is constant, then df = 0. Conversely, if df = 0, then f is constant on each
connected component of M.

Solution:

(a) Fix a,b € R and p € M. For any v € T,,M we have

d(af +bg)y(v) = v(af + bg) = av(f) +buv(g)
= adf,(v) + bdg,(v)
= (adf, + bdg,)(v).
Therefore,
d(af +bg)y = adfy + bdgy,
which yields the statement, since p € M was arbitrary.
(b) Fix p € M. For any v € T,M we have

d(fg)p(v) =v(fg) = f(p)vg + g(p)vf
= f(p) dgp(v) + g(p) dfp(v)
= (f(p) dg, + g(p) df,)) (v).
Therefore,
d(fg)y = f(p)dg, + g(p) dfy,

which yields the statement, since p € M was arbitrary.

Note: We may also argue somewhat differently as follows (the same also applies for
(a) above, and this method will be used in (c) below as well): Let X be a smooth global
vector field on M. For any p € M we have

d(fg)(X)(p) = Xp(fg) = f(p) Xp(9) + 9(p) Xp(f) = (f dg)(X)(p) + (g df )(X)(p).

Therefore,

d(f9)(X) = (f dg)(X) + (g df)(X)
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for any smooth global vector field X, which yields the statement.
(c) Let U :== M \ g~1(0). Let X be a smooth vector field on U. Given p € U, note that

0=X,(1)=X,(9-(1/9)) = 9(0)X,(1/9) + (1/9(p)) X,(9),
which yields
X,(1/9) = =X,(9)/ (9(p)?).
Therefore,

d(1/9)(X)(p) = X,(1/9) = =X,(9)/ (9(p)*) = (—(dg)/g*)(X)(p)

for all X and p, which implies that d(1/g) = —(dg)/g?. Tt follows that

d(f/g) Y (1/g)df + fd(1/g) = (1/g)df — (f/g®)dg = (g df — f dg)/d>,
as desired.

(d) Fix pe M and v € T,M. Write v = viaii »

and note that

3| o = 252D w0 o =) 7

f

P

by the chain rule. Therefore,

d(ho Flyfv) = ( —\) f)

= o (f(p W f=1(I) s

= (A" o f)(p) dfy(v )'

Since v € T,,M was arbitrary, we infer that d(h o f), = (k' o f)(p) df,, and since p € M
was arbitrary, we conclude that d(ho f) = (b’ o f)df.

Note: We may alternatively argue as follows: Let X be a smooth global vector field
on M and let p € M be arbitrary. To avoid confusion, denote by df,: T,M — Ty,R
the differential of f at p € M as a linear map between tangent spaces, and by d®Vf
the covector field determined by f. They are related as follows: for every p € M and
v € T,M, we have

d° fp(v) = [dfp(v)](1dg).
This follows from the fact that the natural identifaction of T, R with R is provided by
evaluation at Idg. Therefore, if p € M and v € T,M are arbitrary, then we have
d*(ho f)y(v) = [d(ho f)y(v)](Idz) = [dhse) (df,(v))] (1dr)
=N (f(p)) - [df,(v)](Idr) = B (f(p)) - d°" fy (),



where we used that for any ¢ € J, the differential dh;: T;.J — Tj,)R is the map given by
scalar multiplication with A'(¢). As p € M and v € T,,M were arbitrary, we conclude that
d(ho f)=(h o f)dovf.

(e) In view of the fact that the differential of f as defined in Chapter 3 (i.e., as a linear
map df,: T,M — T,R) and as defined in Chapter 8 (i.e., as a linear map df,,: T,M — R)
is the same object (due to the canonical identification between R and T,R), the assertion
is simply a special case of [Exercise Sheet 5, Ezercise 5(b)].

Exercise 3:

(a) Derivative of a function along a curve: Let M be a smooth manifold, v: J — M be
a smooth curve, and f: M — R be a smooth function. Show that the derivative of
fovy:J— Ris given by

(f o) (t) = dfy (7' (1)).

(b) Let M be a smooth manifold and let f € C*°(M). Show that p € M is a critical

point of f if and only if df, = 0.

Solution:

(a) Using the definitions, for any ¢ € J we have
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(b) Since the differential df,, is a linear map with codomain the 1-dimensional R-vector
space T,R = R, it is surjective if and only if there exists v € T,M \ {0} such that
df,(v) € R\ {0} = T,R \ {0}. Therefore, p € M is a critical point of f if and only if df,
is not surjective if and only if df, = 0 (i.e., the zero linear map).

(foy)=(fon)(t).

dfye (Y (1) =~'(8) f = dvy (%

t

Remark. Let M be a smooth manifold and let f € C(M). If 7 is a smooth curve in M,
then we have two different meanings for the expression (f o)'(¢). On the one hand, fo~y
can be interpreted as a smooth curve in R, and thus (f o v)'(¢) is its velocity (vector)
at the point (f o y)(t), which is an element of the tangent space T{joyy)R. [Ezercise
Sheet 4, Ezercise 5] shows that this tangent vector is equal to dfy ) (7/(t)), thought of
as an element of T{s.,)»R. On the other hand, f o~ can also be considered simply as a
real-valued function of one real variable, and then (f ov)'(¢) is just its ordinary derivative.
Ezercise 4(a) above shows that this derivative is equal to df, ) ('y’ (t)), thought of as a real
number.

Exercise 4: Let M be a smooth manifold, let .S be an immersed submanifold of M, and
let 1: S < M be the inclusion map. For any f € C>(M), show that d(f|s) = ¢*(df).
Conclude that the pullback of df to S is zero if and only if f is constant on each connected
component of S.



Solution: Since f|g = f o, by Proposition 8.13 we obtain

C(df) = d(f o) = d(fls)-

It follows from the above relation and from Ezercise 2(e) that *(df) = 0 if and only if f
is constant on each connected component of S.

Exercise 5:

(a) Consider the smooth map

(d)

So
(a)

F:R? = R? (s,t) > (st,e")
and the smooth covector field
w = zdy — ydr € X*(R?).
Compute F*w.
Consider the function
fiR® %R, (z,y,2) — 2+ + 22

and the map

2 2 2 21
F:R? - R?, (u,v)l—>( “ Y v ).1

w4+ 1w+ 02+ 1 w2+ 02+ 1
Compute F*(df) and d(f o F') separately, and verify that they are equal.
Consider the smooth manifold

M = {(z,y) eR* |z > 0}
and the smooth function

f: M =R, (z,y) —

z? 4+ y?
Compute the coordinate representation for df and determine the set of all points
p € M at which df, = 0.

Let M be a compact, connected, smooth manifold of dimension n > 0. Show that
every exact smooth covector field on M vanishes at least at two points of M.

lution:
We have

Fro=(zoF)d(yoF)—(yoF)d(zoF)
— (st)d(e) — (¢!)d(st)
= ste' dt — e'(sdt + tds)
= (—te') ds + se'(t — 1) dt.

Note that F is the inverse of the stereographic projection from the north pole N € S?; see [Exercise

Sheet 2, Ezercise 6).



(b) On the one hand, by Ezercise 2 we obtain
df = d(z* +y* + 2%) = 2vdr + 2y dy + 2z dz,

and since
d(zoF)= <u2+v2+1) = u;i;i)l) o du + 2 ;33: e dv,
d(yoF) _d<u2+v2+1) - J:i;“’ it 2<“§;f;21§f”2 v,
d(z0F) = <Z2iz2;) u2+v2 1)2du+(u2+i—2+1>2dv,

we compute that

F*df)=2(xo F)d(xo F)+2(yo F)d(yo F)+2(z0 F)d(z 0o F)

_ 9 2u d 2u 49 2v d 2v n
ST+ 1 \w+0?+1 w4241 \uw?+02+1
+2u2+02—1d u? +v? -1

w?4vr4+1 \u?+0v2+1
~ (Su(w® +0* +1) — 16u?) — 16uv® + Su(u? +v* — 1)
B (u? 4 v2 +1)3

—16u?v + (8v(u? 4+ v* + 1) — 16v%) + 8v(u? + v* — 1)
_l’_

(u?2+0v24+1)3

du+

dv

=0.

On the other hand, we have

2u 2 2v 2 u? 402 -1\
F = (- _— —
(f o F)(u,v) (u2+02+1) +(u2+v2~|—1) +(U2+02+1)
(WP +1)?
RCETE:
=1,

whence d(f o F') = 0 according to Exercise 2(e).

(c) Given a point p = (zo,y0) € M, the differential df, of f at p is represented in
coordinates (z,y) by the row matrix D, whose components are the partial derivatives of
f at p = (o, yo); namely,

af of ye — a2 —2x0Y,
Dp = (%(x(]?yO)v a_y<'f07y0>> = (( S 2027 2 0 202 .

x5 +y3)? (25 +ys)
In view of Ezercise 3(b), to find the points p € M at which df, = 0, we have to solve
the system
y2 _ 1.2 =0
(X) : a
—2xy =0
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under the restriction that x > 0. It is straightforward to see that (X) has no solutions
(xz,y) € M; in other words,
{pe M |df, =0} =0.

(d) Let w € X*(M) be exact and let f € C*°(M) such that w = df. Since M is compact,
f attains its minimum at a point p € M and its maximum at a point ¢ € M, and since
df is represented in coordinates by the gradient of (the coordinate representation of) f,
we have df, = 0 = df,. Note also that if p = ¢, then f is constant, and thus df = 0 by
FEzercise 2(e).



