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Last name First name SCIPER Nr Points

Problem 1: Add-β Estimator

The add-β estimator q+β over [k] , assigns to symbol i a probability proportional to its number of
occurrences plus β , namely,

qi
def
= qi(X

n)
def
= q+β,i(X

n)
def
=

Ti + β

n+ kβ

where Ti
def
= Ti(X

n)
def
=
∑n

j=1 1(Xj = i) . Prove that for all k ≥ 2 and n ≥ 1 ,

min
β≥0

r
l22
k,n(q+β) = r

l22
k,n(q+

√
n/k) =

1− 1
k

(
√
n+ 1)2

Furthermore, q+
√
n/k has the same expected loss for every distribution p ∈ ∆k .

Solution 1. By definition of variance, E(X2) = V (X) + E(X)2 . Hence,

E(pi −
Ti + β

n+ βk
)2 =

1

(n+ kβ)2
E (Ti − npi − β(kpi − 1))

2

=
1

(n+ kβ)2
(
V (Ti) + β2(kpi − 1)2

)
=

1

(n+ kβ)2
(npi(1− pi) + β2(kpi − 1)2)

The loss of the add-β estimator for a distribution p is therefore,

E∥p− q+β(X
n)∥22 =

k∑
i=1

E
(
pi −

Ti + β

n+ kβ

)2

=
1

(n+ kβ)2

(
n− β2k − (n− β2k2)

k∑
i=1

p2i

)

The expected l22 loss of an add-β estimator is therefore determined by just the sum of squares
∑k

i=1 p
2
i

that ranges from 1/k to 1 . For β ≤
√
n/k , the expected loss is maximized when the square sum is 1/k ,

and for β ≥
√
n/k , when the square sum is 1 , yielding

r
l22
k,n(q+β) = max

p∈∆k

E∥p− q+β(X
n)∥22 =

1

(n+ kβ)2


n(1− 1

k
) for β ≤

√
n

k

β2k(k − 1) for β >

√
n

k

For β ≤
√
n/k , the expected loss decreases as β increases, and for β >

√
n/k , it increases as β

increases, hence the minimum worst-case loss is achieved for β =
√
n/k . Furthermore, q+

√
n/k has the

same expected loss for every underlying distribution p .
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Problem 2: ℓ1 versus Total Variation

In class we defined the ℓ1 distance as

∥p− q∥1 =

k∑
i=1

|pi − qi|.

Another important distance is the total variation distance dTV(p, q) . It is defined as

dTV(p, q) = max
S⊆{1,··· ,k}

|
∑
i∈S

(pi − qi)|.

Show that if p, q are two probability mass vectors (i.e. elements of the simplex) we have that dTV(p, q) =
1
2∥p− q∥1 .

Solution 2. Let S = {i ∈ {1, · · · , k} : pi ≥ qi} . Then

|
∑
i∈S

(pi − qi)| =
∑
i∈S

|pi − qi|.

And further, since both are probability distributions

|
∑
i∈S

(pi − qi)| = |[
∑
i∈S

pi]−
∑
i∈S

qi]|

= |1− [
∑

i∈{1,··· ,k}\S

pi]− 1 + [
∑

i∈{1,··· ,k}\S

qi]|

= |
∑

i∈{1,··· ,k}\S

(qi − pi)|

=
∑

i∈{1,··· ,k}\S

|pi − qi|.

It follows that ∥p− q∥1 ≤ 2dTV(p, q) . But this also shows that |
∑

i∈S(pi − qi)| = 2dTV(p, q) , and hence
we have equality.

Problem 3: Poisson Sampling

Assume that we have given a distribution p on X = {1, · · · , k} . Let Xn denote a sequence of n
iid samples. Let Ti = Ti(X

n) be the number of times symbol i appears in Xn . Then

{Ti = ti} =

(
n

ti

)
ptii (1− pi)

n−ti .

Note that the random variables Ti are dependent, since
∑

i Ti = n . This dependence can sometimes be
inconvenient.

There is a convenient way of getting around this problem. Thit is called Poisson sampling. Let N be a
random variable distributed according to a Poisson distribution with mean n . Let XN be then an iid
sequence of N variables distributed according to p .

Conditioned on N = n , what is the induced distribution of the Poisson sampling scheme?

Show that

1. Ti(X
N ) is distributed according to a Poisson random variable with mean pin .
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2. The Ti(X
N ) are independent.

Solution 3. (1) Recall that the pmf of a Poi (n) is:

(N = N∗) = e−nn
N∗

N∗!

Using the concept of conditional probability, we have

(Ti(X
N ) = ti) =

∑
N∗≥ti

(N = N∗)(Ti = ti|N = N∗)

=
∑

N∗≥ti

e−nn
N∗

N∗!

(
N∗

ti

)
ptii (1− pi)

N∗−ti

= e−n
∑

N∗≥ti

nti+N∗−ti

N∗!

N∗!

ti!(N∗ − ti)!
ptii (1− pi)

N∗−ti

=
e−n

ti!
(npi)

ti
∑

N∗≥ti

nN∗−ti

(N∗ − ti)!
(1− pi)

N∗−ti

=
e−n

ti!
(npi)

ti
∑

N∗≥ti

(n− npi)
N∗−ti

(N∗ − ti)!

=
e−n

ti!
(npi)

tien−npi

= enpi
(npi)

ti

ti!

where in the second last line, we use the fact that ex =
∑

i≥0
xi

i! . The resulting probability is the
pmf of Poi (npi) .

(2) Here, to prove that the random variables are mutually independent, we need to show that

P
(
T1(X

N ) = t1, T2(X
N ) = t2, . . . , Tk(X

N ) = tk
)
=

k∏
i=1

P (Ti(X
N ) = ti).

We compute

P
(
T1(X

N ) = t1, . . . , Tk(X
N ) = tk

)
=
∑
m≥0

P
(
T1(X

N ) = t1, . . . , Tk(X
N ) = tk|N = m

)
P (N = m)

= P

(
T1(X

N ) = t1, . . . , Tk(X
N ) = tk

∣∣∣N =

k∑
i=1

ti

)
P

(
N =

k∑
i=1

ti

)

since the only N for which the probability is non-zero with this choice of t1, . . . , tk is N =
∑k

i=1 ti .

Moreover, we know that P
(
T1(X

N ) = t1, . . . , Tk(X
N ) = tk|N =

∑k
i=1 ti

)
follows a multinomial

distribution. Thus, we get
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P

(
T1(X

N ) = t1, . . . , Tk

(
XN

)
= tk

∣∣∣N =

k∑
i=1

ti

)
· P

(
N =

k∑
i=1

ti

)

=

(
t1 + · · ·+ tk
t1, . . . , tk

) k∏
i=1

(
ptii
)
· e−nnt1+···+tk

(t1 + · · ·+ tk)!

=
(t1 + · · ·+ tk)!

t1!t2! . . . tk!

k∏
i=1

(
ptii
)
· e−nnt1+···+tk

(t1 + · · ·+ tk)!

= e−nnt1+···+tk

k∏
i=1

(
ptii
ti!

)

=

k∏
i=1

e−npi(npi)
ti

ti!

=

k∏
i=1

P (Ti(X
N ) = ti).

So the Ti(X
N ) are independent.

Problem 4: Uniformity Testing

Let us reconsider the problem of testing against uniformity. In the lecture we saw a particular test
statistics that required only O(

√
k/ϵ2) samples where ϵ was the ℓ1 distance.

Let us now derive a test from scratch. To make things simple let us consider the ℓ22 distance. Recall
that the alphabet is X = {1, · · · , k} , where k is known. Let U be the uniform distribution on X , i.e.,
ui = 1/k . Let P be a given distribution with components pi . Let Xn be a set of n iid samples. A pair
of samples (Xi, Xj) , i ̸= j , is said to collide if Xi = Xj , if they take on the same value.

1. Show that the expected number of collisions is equal to
(
n
2

)
∥p∥22 .

2. Show that the uniform distribution minimizes this quantity and compute this minimum.

3. Show that ∥p− u∥22 = ∥p∥22 − 1
k .

NOTE: In words, if we want to distinguish between the uniform distribution and distributions
P that have an ℓ22 distance from U of at least ϵ , then this implies that for those distributions
∥p∥22 ≥ 1/k+ ϵ . Together with the first point this suggests the following test: compute the number
of collisions in a sample and compare it to

(
n
2

)
(1/k + ϵ/2) . If it is below this threshold decide on

the uniform one. What remains is to compute the variance of the collision number as a function of
the sample size. This will tell us how many samples we need in order for the test to be reliable.

4. Let a =
∑

i p
2
i and b =

∑
i p

3
i . Show that the variance of the collision number is equal to(

n

2

)
a+

(
n

2

)[(
n

2

)
−
(
1 +

(
n− 2

2

))]
b+

(
n

2

)(
n− 2

2

)
a2 −

(
n

2

)2

a2

=

(
n

2

)
[2b(n− 2) + a(1 + a(3− 2n))]

by giving an interpretation of each of the terms in the above sum.

NOTE: If you don’t have sufficient time, skip this step and go to the last point.
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For the uniform distribution this is equal to(
n

2

)
(k − 1)(2n− 3)

k2
≤ n2

2k
.

NOTE: You don’t have to derive this from the previous result. Just assume it.

5. Recall that we are considering the ℓ22 distance which becomes generically small when k is large.
Therefore, the proper scale to consider is ϵ = κ/k . Use the Chebyshev inequality and conclude
that if we have Θ(

√
k/κ) samples then with high probability the empirical number of collisions will

be less than
(
n
2

)
(1/k + κ/(2k)) assuming that we get samples from a uniform distribution.

NOTE: The second part, namely verifying that the number of collisions is with high probability smaller
than

(
n
2

)
(1/k + κ/(2k)) when we get Θ(

√
k/κ) samples from a distribution with ℓ22 distance at least

κ/k away from a uniform distribution follows in a similar way.

HINT: Note that if p represents a vector with components pi then ∥p∥1 =
∑

i |pi| and ∥p∥22 =
∑

i p
2
i .

Solution 4. 1. There are
(
n
2

)
pairs. For each pair the chance that both values agree is equal to∑

i p
2
i = ∥p∥22 .

2. Let u be the vector of length k with all-one entries. Then, by using the Cauchy-Schwartz inequality,
∥p∥22 = ⟨p, p⟩ ≥ ⟨p, u⟩2/⟨u, u⟩ = 1/k .

3. Expanding the expression, we get

∥p− u∥22 = ∥p∥22 − 2⟨p, u⟩+ ∥u∥22 = ∥p∥22 − 2/k + 1/k = ∥p∥22 − 1/k.

4. Recall that in order to count collisions we look at pairs of indices in our samples. Let (i, j) ,
1 ≤ i < j ≤ n , be one such pair. When computing the variance we are looking at pairs of pairs.
E.g., (i, j) and (u, v) . There are four parts in the expression for the variance. These have the
following interpretation. The first part comes from all pairs with total overlap, i.e., (i, j) = (u, v) .
There are

(
n
2

)
such cases. The second part comes from pairs where exactly one index is repeated.

The third term comes from pairs with no overlap. And the fourth term is the mean squared so that
we convert from the second moment to the variance.

5. By the Chebyshev’s inequality, if C(Xn) counts the number of collisions in our sample then,
assuming that the sample comes from the uniform distribution,

Pr{C(Xn)−
(
n

2

)
1

k
≥
(
n

2

)
κ

2k
} ≤ n2/(2k)(

n
2

)2 κ2

4k2

≤ k

n2κ2
.

Therefore, as long as n is large compared to
√
k/κ2 the right-hand side goes to zero. In other

words, we need Θ(
√
k/κ) samples.

Problem 5: James-Stein Estimator (a) Assume that X ∼ N (0, 1) and that f : R → R is such
that E[|Xf(X)|] < ∞ and E[|f ′(X)|] < ∞ . Show that

E[Xf(X)] = E[f ′(X)].

Hint 1: for the derivative of the probability density function p(·) of a mean zero, unit variance
Gaussian random variable it holds that p′(x) = −xp(x) .

Hint 2: recall that integration by parts asserts that
∫ b

a
u(t)v′(t)dt = u(t)v(t)|ba −

∫ b

a
u′(t)v(t)dt .
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(b) Now assume that X ∼ N (µ, σ2) and that f : R → R is such that E[|(X − µ)f(X)|] < ∞ and
E[|f ′(X)|] < ∞ . Re-using the result from (a), show that

E[(X − µ)f(X)] = σ2E[f ′(X)].

For the remainder of the problem, we are concerned with assessing the performance of estimators θ̂ of
a mean vector θ ∈ Rn , with ℓ2 -loss and corresponding risk R(θ̂) := E[∥θ − θ̂(Z)∥22] , and with data
generated according to Z := (Z1, Z2, . . . , Zn) ∼ N (θ, σ2I) .

Assume that we write the estimator in the form θ̂(z) = g(z) + z with z = (z1, . . . , zn) and g(z) =
(g1(z), . . . , gn(z)) . Consider the expression

R̂(θ̂, z) = nσ2 + 2σ2
n∑

i=1

∂gi(z)

∂zi
+

n∑
i=1

g2i (z).

(c) Show that R̂(θ̂, z) is an unbiased estimator of the risk, i.e., verify that E[R̂(θ̂, Z)] = R(θ̂) . You
can assume without proof that the technical assumptions necessary for the result in (b) are met.

Hint: (a− b)2 = (a− c+ c− b)2 for any c ; choosing c cleverly might help you.

The above risk estimator is called Stein’s Unbiased Risk Estimate (SURE).

We assume from hereon for simplicity that σ2 = 1 .

In statistical inference, if one has complete knowledge about the data generating model (in our case we
know that Z ∼ N (θ, σ2I) ), it is usually a safe bet to do maximum likelihood (ML) estimation. In our

setting, the ML estimator is given by the simple identity map θ̂ML(z) = z . It can be proven that for our
Gaussian model and with n = 1 , one cannot “do better” (in some precise technical sense) in terms of ℓ2 -

risk than θ̂ML . Encouraged by this fact, let us analyze its performance in the general multi-dimensional
case:

(d) Assume n ∈ N+ . Calculate the risk R(θ̂ML) of the maximum likelihood estimator.

A historically important result in statistics states that when one tries to jointly estimate multiple pa-
rameters (n > 1 ), it can happen that there are methods that perform strictly better than a simple
component-wise application of the best scalar (n = 1) estimator.

One such example is provided by the James-Stein estimator, which is defined as

θ̂JS(z) =

(
1− n− 2

∥z∥22

)
z.

We assume from hereon that n ≥ 3 (Remark: we do this since for n = 1 , the technical assumptions

necessary for the result in b) are not met; and for n = 2 , θ̂JS = θ̂ML which is not very interesting.).

(e) Using SURE, estimate the risk of the James-Stein estimator, i.e., calculate R̂(θ̂JS , Z) .

Hint: recall the quotient rule which states that
(u(t)
v(t)

)′
= u′(t)v(t)−u(t)v′(t)

(v(t))2 .

(f) Calculate the risk R(θ̂JS) – not by direct calculation (which is quite tedious) – but by exploiting

the unbiasedness of SURE and using the result in (e). How does the risk compare to that of θ̂ML

for n ≥ 3 ?
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Solution 5.

(a) Integrating by parts and using the hint yields

E[f ′(X)] =

∫ ∞

−∞
f ′(t)p(t)dt = f(t)p(t)

∣∣∞
−∞ +

∫ ∞

−∞
tf(t)p(t)dt.

We observe that the first term on the RHS is zero whereas the second term equals E[Xf(X)] .

(b) Define X̃ := X−µ
σ and f̃(x) := f(σx+µ) . Note that it holds X̃ ∼ N (0, 1) and f(X) = f̃(X̃) and

hence E[(X − µ)f(X)] = σE[X̃f̃(X̃)] . The result now follows from applying (a) and noting that
f̃ ′(x) = σf ′(x) by the chain rule.

(c)

R(θ̂) =

n∑
i=1

E[(θ̂i − θi)
2]

=

n∑
i=1

E[(θ̂i − Zi + Zi − θi)
2]

=

n∑
i=1

E[(Zi − θi)
2] + 2

n∑
i=1

E[(θ̂i − Zi)(Zi − θi)] +

n∑
i=1

E[(θ̂i − Zi)
2]

= nσ2 + 2

n∑
i=1

E[gi(Z)(Zi − θi)] +

n∑
i=1

E[(θ̂i − Zi)
2]

= nσ2 + 2σ2
n∑

i=1

E[
∂gi(Z)

∂zi
] +

n∑
i=1

E[(θ̂i − Zi)
2] (1)

= E[R̂(Z)]

where (1) follows from applying (b) to E[gi(Z)(Zi − θi)|Zi] .

(d) R(θ̂ML) = E[∥Z − θ∥2] = n .

(e) First note that that the James-Stein’s estimator can be written in the form θ̂JS(z) = z+ g(z) with
g(z) = − n−2

∥z∥2
2
z . Applying SURE, we get

R̂(θ̂JS) = n+ 2

n∑
i=1

−(n− 2)∥Z∥22 + (n− 2)Zi · 2Zi

∥Z∥42
+

n∑
i=1

(n− 2)2

∥Z∥42
Z2
i

= n− 2n(n− 2)

∥Z∥22
+

4(n− 2)

∥Z∥22
+

(n− 2)2

∥Z∥22

= n− (n− 2)2

∥Z∥22
.

(f) Next, we get the true risk by recalling that SURE is unbiased. Hence we can get the true risk by
simply taking the expectation of SURE:

R(θ̂JS) = E[R̂(θ̂JS)] = n− (n− 2)2E[
1

∥Z∥22
].

The risk is strictly smaller than R(θ̂ML) for all n ≥ 3 .
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