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Agenda

• Tuples
• Tuples vs. lists
• Tuples
• Tuple packing and unpacking

• Example: swap two values
• Tuples and enumerate()

• Sets
• Creating
• Adding/removing
• Set operations

• Intersection
• Union
• Difference and Symmetric difference
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Tuples
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Tuples vs. Lists

• Tuples and lists are similar
• Both are sequences of data
• Both store a collection of items, where each item can be of any type
• In both, one can access any item by its index

• What is the difference then? 
• Lists are mutable (can be changed)
• Tuples are immutable (cannot be changed)
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Tuples vs Lists
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• Unlike lists: Tuples are delimited by parentheses
• Like lists: Commas separate tuple elements

fruits_lst = ['raspberry', 'mango', 'kiwi'] # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango', 'kiwi') # ('raspberry', 'mango', 'kiwi')
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Tuples are Immutable Cannot be Modified
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fruits_lst = ['raspberry', 'mango', 'kiwi']  # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango', 'kiwi')  # ('raspberry', 'mango', 'kiwi')

fruits_lst.append('apple')  # ['raspberry', 'mango', 'kiwi', 'apple']

fruits_tpl.append('apple')  # won't work because a tuple cannot be changed!

File ".\tuples.py", line 13, in <module> 
fruits_tpl.append('apple')
AttributeError: 'tuple' object has no attribute 'append'
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Tuples are Immutable
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fruits_lst = ['raspberry', 'mango', 'kiwi'] # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango', 'kiwi') # ('raspberry', 'mango', 'kiwi')

fruits_lst[0] = 'orange' # ['orange', 'mango', 'kiwi', 'apple']

fruits_tpl[0] = 'orange'  # won't work either!

File ".\tuples.py", line 20, in <module>
fruits_tpl[0] = 'orange'

TypeError: 'tuple' object does not support item assignment
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How to Work with Tuples?

• Functions and methods that do not attempt to modify a tuple
will work equally well for tuples and lists
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fruits_tpl = ('raspberry', 'mango', 'kiwi') 

len(fruits_tpl) # number of elements, 3

fruits_tpl[1] # indexing, 'mango'

fruits_tpl[:2] # slicing, ('raspberry', 'mango')

'mango' in fruits_tpl # True

'watermellon' in fruits_tpl # False

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic



Tuple Packing and Unpacking

• In Python, there is a very powerful tuple assignment feature
that assigns the right-hand side values to the left-hand side

• Packing: From values to a tuple
• Unpacking: From a tuple to a variable

9CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

values = 123, 'crayon', -9.5
print(values) # (123, 'crayon', -9.5)
type(values) # <class 'tuple'>

Packing: Comma-separated right-side 
values are converted to a tuple.



Tuple Packing and Unpacking

Unpacking: Comma-separated left-side values are 
unpacked automatically from a tuple.
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a, b, c = values # a=123, b='crayon', c=-9.5
type(a) # <class 'int'>
type(b) # <class 'str'>
type(c) # <class 'float'>
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Ignoring Values When Unpacking

• Sometimes, we do not care for all values in a tuple we are unpacking

# To ignore a value, use an underscore _
d, _, f = values
print(d, f)
# 123 -9.5
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Packing&Unpacking Example: Swap Values

x = 1
y = 99

temp = x # temp = 1
x = y # x = 99
y = temp # y = 1
print(x, y) # 99 1
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Using temporary variable
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Packing&Unpacking Example: Swap Values

13CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

x = 1
y = 99

x, y = y, x

print(x, y) # 99 1

Packing into
a tuple (99, 1)Unpacking to x, y

Using tuple packing and unpacking



Reminder: Built-in Function enumerate()

• Allows to iterate over an object and to keep count of iterations

• Takes two arguments
• A sequence or an object that supports iteration
• Start (optional, default zero): iterates starting from this number

• Returns:
• Enumerate object, which you can convert to a list or tuple using

list() and tuple() methods
• Typical use case

• Obtain an index of an element of a list or a tuple besides its value
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Tuples and Enumerate Neat Way of Traversing Sequences

• To extract the  index of an element of a list (or tuple) besides its 
value, the most Pythonic way is to use  enumerate( )

• Note the use of tuples and unpacking in the example below
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fruits_lst = ['raspberry', 'mango', 'kiwi'] 

for index, fruit in enumerate(fruits_lst):
print(index, fruit)

# 0 raspberry
# 1 mango
# 2 kiwi
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Tuples and Enumerate Neat Way of Traversing Sequences

• To extract the  index of an element of a list (or tuple) besides its 
value, the most Pythonic way is to use  enumerate( )
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fruits_lst = ['raspberry', 'mango', 'kiwi'] 
enumerate_fruits = enumerate(fruits_lst) 
# Returns an object of enumerate type

print(enumerate_fruits) # Unusable value printed
# Convert the enumerate object to a list to print it
enumerate_fruits_l = list(enumerate_fruits)
# [(0, 'raspberry'), (1, 'mango'), (2, 'kiwi')]
# Note that every element of this list is a tuple
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Sets
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Sets

• Unordered collections of distinct elements
• Sets are delimited by curly braces

• When to use sets?
• When having duplicates is not an option
• When performing set operations is the aim
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my_set = {1, 2, 3, 'a', 'b', 'c'}
type(my_set)  # <class 'set'>
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Example: Removal of Duplicates from a List

• Write a function that takes a list of characters and returns another 
list containing all the original list's unique elements. 
Sort the returned list in the alphabetic order.
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def remove_duplicates(input_list):
return list(set(input_list))

l = list('johnsnow') # ['j', 'o', 'h', 'n', 's', 'n', 'o', 'w']
l_without_repetitions = remove_duplicates(l)
print(sorted(l_without_repetitions))
# ['h', 'j', 'n', 'o', 's', 'w']



Common Set Operations: Creating Sets

# Creating an empty set
my_set = set()

# Creating a set from a list
my_set = set([1, 2, 2, 3, 'a', 'a', 'b'])  
# {1, 2, 3, 'b', 'a'}
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Unordered and unique elements.
To order, use the built-in sorted() function.
But, beware, integers and strings cannot
be compared (typeError will be raised).
Also, note that sorted( ) returns a list.
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Common Set Operations

# Finding the set size
len(my_set) # 5

# Figuring out if an element is in the set
3 in my_set # True
'c' in my_set # False

# Adding an element to a set
my_set.add('c') # {1, 2, 3, 'b', 'c', 'a'}
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Common Set Operations: Removing Elements

# Removing a specific element
my_set.discard('c')  # {1, 2, 3, 'b', 'a'}
# discard() does not raise an error if
# the element does not exist

# Removing an arbitrary element
my_set.pop() 
# pop() removes and returns an arbitrary element
# from the set. If the set is empty, it raises an
# error KeyError: 'pop from an empty set'
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Set Operations

• Four binary operations on sets:
• Intersection
• Union
• Difference
• Symmetric difference
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Intersection &: Elements in Both Sets

pirate = set('jacksparrow') 
# {'p', 'o', 'k', 'r', 'a', 'w', 's', 'j', 'c'}
king_in_the_north = set('johnsnow') 
# {'o', 'h', 'w', 's', 'j', 'n'}

# Intersection = elements present in both sets
pirate & king_in_the_north
# {'w','s','j','o'}
# 4 elements
# arbitrary order
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Union I: All Unique Elements in The Two Sets

pirate = set('jacksparrow') 
# {'p', 'o', 'k', 'r', 'a', 'w', 's', 'j', 'c'}
king_in_the_north = set('johnsnow') 
# {'o', 'h', 'w', 's', 'j', 'n'}

# Union, elements present in one set or the other
my_union = pirate | king_in_the_north
# {'r', 'j', 'p', 's', 'w', 
# 'n', 'c', 'o', 'k', 'a', 'h'}
# 11 elements, arbitrary order
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Difference -: Elements in One but Not Other Set

pirate = set('jacksparrow') 
# {'p', 'o', 'k', 'r', 'a', 'w', 's', 'j', 'c'}
king_in_the_north = set('johnsnow') 
# {'o', 'h', 'w', 's', 'j', 'n'}

# Difference = set – intersection
pirate - king_in_the_north
# {'k', 'r', 'p', 'c', 'a'}
# 5 elements, arbitrary order
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Symmetric difference ^: All But The Intersection

# reminder
# union: {'r','j','p','s','w','n','c','o','k','a','h'}
# intersection: {'w','s','j','o'}

# Symmetric difference = union – intersection
pirate ^ king_in_the_north
# {'k', 'r', 'a', 'p', 'c', 'n', 'h'}
# 7 elements, arbitrary order
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Summary

• Tuples are immutable sequences of objects
• Brackets (parentheses) delimit tuples
• Tuples are handy for packing and unpacking values
• enumerate( ) operates on tuples

• Sets are unordered collections of distinct objects
• Curly brackets delimit sets
• When printed, set elements are unordered
• Useful when intersection or difference of sets is desired
• Elegant removal of duplicates in a list
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Next topic: 
Dictionaries
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