
Information, Computation, Communication
Learning Python

Tuples and Sets

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Agenda

• Tuples
• Tuples vs. lists
• Tuples
• Tuple packing and unpacking

• Example: swap two values
• Tuples and enumerate()

• Sets
• Creating
• Adding/removing
• Set operations

• Intersection
• Union
• Difference and Symmetric difference

2CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Tuples

3CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Tuples vs. Lists

• Tuples and lists are similar
• Both are sequences of data
• Both store a collection of items, where each item can be of any type
• In both, one can access any item by its index

• What is the difference then?
• Lists are mutable (can be changed)
• Tuples are immutable (cannot be changed)

4CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples vs Lists

5

• Unlike lists: Tuples are delimited by parentheses
• Like lists: Commas separate tuple elements

fruits_lst = ['raspberry', 'mango', 'kiwi'] # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango', 'kiwi') # ('raspberry', 'mango', 'kiwi')

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples are Immutable Cannot be Modified

6

fruits_lst = ['raspberry', 'mango', 'kiwi'] # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango', 'kiwi') # ('raspberry', 'mango', 'kiwi')

fruits_lst.append('apple') # ['raspberry', 'mango', 'kiwi', 'apple']

fruits_tpl.append('apple') # won't work because a tuple cannot be changed!

File ".\tuples.py", line 13, in <module>
fruits_tpl.append('apple')
AttributeError: 'tuple' object has no attribute 'append'

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples are Immutable

7

fruits_lst = ['raspberry', 'mango', 'kiwi'] # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango', 'kiwi') # ('raspberry', 'mango', 'kiwi')

fruits_lst[0] = 'orange' # ['orange', 'mango', 'kiwi', 'apple']

fruits_tpl[0] = 'orange' # won't work either!

File ".\tuples.py", line 20, in <module>
fruits_tpl[0] = 'orange'

TypeError: 'tuple' object does not support item assignment

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

How to Work with Tuples?

• Functions and methods that do not attempt to modify a tuple
will work equally well for tuples and lists

8

fruits_tpl = ('raspberry', 'mango', 'kiwi')

len(fruits_tpl) # number of elements, 3

fruits_tpl[1] # indexing, 'mango'

fruits_tpl[:2] # slicing, ('raspberry', 'mango')

'mango' in fruits_tpl # True

'watermellon' in fruits_tpl # False

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuple Packing and Unpacking

• In Python, there is a very powerful tuple assignment feature
that assigns the right-hand side values to the left-hand side

• Packing: From values to a tuple
• Unpacking: From a tuple to a variable

9CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

values = 123, 'crayon', -9.5
print(values) # (123, 'crayon', -9.5)
type(values) # <class 'tuple'>

Packing: Comma-separated right-side
values are converted to a tuple.

Tuple Packing and Unpacking

Unpacking: Comma-separated left-side values are
unpacked automatically from a tuple.

10

a, b, c = values # a=123, b='crayon', c=-9.5
type(a) # <class 'int'>
type(b) # <class 'str'>
type(c) # <class 'float'>

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Ignoring Values When Unpacking

• Sometimes, we do not care for all values in a tuple we are unpacking

To ignore a value, use an underscore _
d, _, f = values
print(d, f)
123 -9.5

11CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Packing&Unpacking Example: Swap Values

x = 1
y = 99

temp = x # temp = 1
x = y # x = 99
y = temp # y = 1
print(x, y) # 99 1

12CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Using temporary variable

EX
A

M
PL

ES

Packing&Unpacking Example: Swap Values

13CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

x = 1
y = 99

x, y = y, x

print(x, y) # 99 1

Packing into
a tuple (99, 1)Unpacking to x, y

Using tuple packing and unpacking

Reminder: Built-in Function enumerate()

• Allows to iterate over an object and to keep count of iterations

• Takes two arguments
• A sequence or an object that supports iteration
• Start (optional, default zero): iterates starting from this number

• Returns:
• Enumerate object, which you can convert to a list or tuple using

list() and tuple() methods
• Typical use case

• Obtain an index of an element of a list or a tuple besides its value

14CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples and Enumerate Neat Way of Traversing Sequences

• To extract the index of an element of a list (or tuple) besides its
value, the most Pythonic way is to use enumerate()

• Note the use of tuples and unpacking in the example below

15

fruits_lst = ['raspberry', 'mango', 'kiwi']

for index, fruit in enumerate(fruits_lst):
print(index, fruit)

0 raspberry
1 mango
2 kiwi

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples and Enumerate Neat Way of Traversing Sequences

• To extract the index of an element of a list (or tuple) besides its
value, the most Pythonic way is to use enumerate()

16

fruits_lst = ['raspberry', 'mango', 'kiwi']
enumerate_fruits = enumerate(fruits_lst)
Returns an object of enumerate type

print(enumerate_fruits) # Unusable value printed
Convert the enumerate object to a list to print it
enumerate_fruits_l = list(enumerate_fruits)
[(0, 'raspberry'), (1, 'mango'), (2, 'kiwi')]
Note that every element of this list is a tuple

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Sets

17CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Sets

• Unordered collections of distinct elements
• Sets are delimited by curly braces

• When to use sets?
• When having duplicates is not an option
• When performing set operations is the aim

18

my_set = {1, 2, 3, 'a', 'b', 'c'}
type(my_set) # <class 'set'>

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Example: Removal of Duplicates from a List

• Write a function that takes a list of characters and returns another
list containing all the original list's unique elements.
Sort the returned list in the alphabetic order.

19CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

def remove_duplicates(input_list):
return list(set(input_list))

l = list('johnsnow') # ['j', 'o', 'h', 'n', 's', 'n', 'o', 'w']
l_without_repetitions = remove_duplicates(l)
print(sorted(l_without_repetitions))
['h', 'j', 'n', 'o', 's', 'w']

Common Set Operations: Creating Sets

Creating an empty set
my_set = set()

Creating a set from a list
my_set = set([1, 2, 2, 3, 'a', 'a', 'b'])
{1, 2, 3, 'b', 'a'}

20

Unordered and unique elements.
To order, use the built-in sorted() function.
But, beware, integers and strings cannot
be compared (typeError will be raised).
Also, note that sorted() returns a list.

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Common Set Operations

Finding the set size
len(my_set) # 5

Figuring out if an element is in the set
3 in my_set # True
'c' in my_set # False

Adding an element to a set
my_set.add('c') # {1, 2, 3, 'b', 'c', 'a'}

21CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Common Set Operations: Removing Elements

Removing a specific element
my_set.discard('c') # {1, 2, 3, 'b', 'a'}
discard() does not raise an error if
the element does not exist

Removing an arbitrary element
my_set.pop()
pop() removes and returns an arbitrary element
from the set. If the set is empty, it raises an
error KeyError: 'pop from an empty set'

22CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Set Operations

• Four binary operations on sets:
• Intersection
• Union
• Difference
• Symmetric difference

23CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Intersection &: Elements in Both Sets

pirate = set('jacksparrow')
{'p', 'o', 'k', 'r', 'a', 'w', 's', 'j', 'c'}
king_in_the_north = set('johnsnow')
{'o', 'h', 'w', 's', 'j', 'n'}

Intersection = elements present in both sets
pirate & king_in_the_north
{'w','s','j','o'}
4 elements
arbitrary order

24CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Union I: All Unique Elements in The Two Sets

pirate = set('jacksparrow')
{'p', 'o', 'k', 'r', 'a', 'w', 's', 'j', 'c'}
king_in_the_north = set('johnsnow')
{'o', 'h', 'w', 's', 'j', 'n'}

Union, elements present in one set or the other
my_union = pirate | king_in_the_north
{'r', 'j', 'p', 's', 'w',
'n', 'c', 'o', 'k', 'a', 'h'}
11 elements, arbitrary order

25CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Difference -: Elements in One but Not Other Set

pirate = set('jacksparrow')
{'p', 'o', 'k', 'r', 'a', 'w', 's', 'j', 'c'}
king_in_the_north = set('johnsnow')
{'o', 'h', 'w', 's', 'j', 'n'}

Difference = set – intersection
pirate - king_in_the_north
{'k', 'r', 'p', 'c', 'a'}
5 elements, arbitrary order

26CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Symmetric difference ^: All But The Intersection

reminder
union: {'r','j','p','s','w','n','c','o','k','a','h'}
intersection: {'w','s','j','o'}

Symmetric difference = union – intersection
pirate ^ king_in_the_north
{'k', 'r', 'a', 'p', 'c', 'n', 'h'}
7 elements, arbitrary order

27CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

Summary

• Tuples are immutable sequences of objects
• Brackets (parentheses) delimit tuples
• Tuples are handy for packing and unpacking values
• enumerate() operates on tuples

• Sets are unordered collections of distinct objects
• Curly brackets delimit sets
• When printed, set elements are unordered
• Useful when intersection or difference of sets is desired
• Elegant removal of duplicates in a list

28CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

29

Next topic:
Dictionaries

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

	Information, Computation, Communication�Learning Python
	Agenda
	Tuples
	Tuples vs. Lists
	Tuples vs Lists
	Tuples are Immutable Cannot be Modified
	Tuples are Immutable
	How to Work with Tuples?
	Tuple Packing and Unpacking
	Tuple Packing and Unpacking
	Ignoring Values When Unpacking
	Packing&Unpacking Example: Swap Values
	Packing&Unpacking Example: Swap Values
	Reminder: Built-in Function enumerate()
	Tuples and Enumerate Neat Way of Traversing Sequences
	Tuples and Enumerate Neat Way of Traversing Sequences
	Sets
	Sets
	Example: Removal of Duplicates from a List
	Common Set Operations: Creating Sets
	Common Set Operations
	Common Set Operations: Removing Elements
	Set Operations
	Intersection &: Elements in Both Sets
	Union I: All Unique Elements in The Two Sets
	Difference -: Elements in One but Not Other Set
	Symmetric difference ^: All But The Intersection
	Summary
	Slide Number 29

