Information, Computation, Communication

Learning Python

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Agenda

« Tuples
o Tuplesvs. lists

 Tuples
« Tuple packing and unpacking

« Example: swap two values
« Tuples and enumerate()

¢ Sets
« (Creating
« Adding/removing
« Set operations

e |ntersection
e Union

« Difference and Symmetric difference

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

nm ERCIER=R=N-R
a -llllﬁ‘llll_
livdﬁ!l!l!l.“m_
lllllllll

EEEENEENEEEN
-u-uu;ﬂll.llll_
I

EEEEENEE |n§3h_ i e
.......u----nllnllllalllll-__
= w um--llillﬁlll—_

ol s ENENENNEENIES

P ---.IIIII_III..l
-nullllllllll_

S s EEEN

. llilllll_
-nzuillllll_—

e s s s s EEEEEEEEEEEEE N
............ AN E NN N]
c o+ s s =2 = o3 om om N E 2 HEEDIENEZENEES N S

H E

© + = + = = = m s m E ™ EESEEREEERN

© kras99 / Adobe Stock

Tup les L '.-. _———

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic I Lo b sibok

Tuples vs. Lists

* Tuples and lists are similar
« Both are sequences of data
« Both store a collection of items, where each item can be of any type
* In both, one can access any item by its index

« What is the difference then?

« Lists are mutable (can be changed)
« Tuples are immutable (cannot be changed)

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples vs Lists

* Unlike lists: Tuples are delimited by parentheses
 Like lists: Commas separate tuple elements

fruits l1lst = | , ,]

fruits _tpl = (, ,)

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples are Immutable........ v

fruits 1lst = ['raspberry', 'mango', 'kiwi'] # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango’', 'kiwi') # ('raspberry', 'mango’', ‘kiwi')

fruits_lst.append('apple’) # ['raspberry’, 'mango', ‘'kiwi', "apple’]

fruits _tpl.append('apple’) # won't work because a tuple cannot be changed!

—

File ".\tuples.py", line 13, in <module>
fruits_tpl.append('apple’)
AttributeError: 'tuple' object has no attribute 'append'’

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuples are Immutable

fruits lst = ['raspberry', 'mango', 'kiwi'] # ['raspberry', 'mango', 'kiwi']

fruits_tpl = ('raspberry', 'mango', 'kiwi') # ('raspberry', 'mango’, 'kiwi')

fruits 1st[0]

fruits_tpl[@] = 'orange’ # won't work either! *i::::>

File ".\tuples.py", line 20, in <module>
fruits_tpl[@] = 'orange'
TypeError: 'tuple' object does not support item assignment

‘orange' # ['orange', 'mango', 'kiwi', 'apple']

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

How to Work with Tuples?

« Functions and methods that do not attempt to modify a tuple
will work equally well for tuples and lists

fruits tpl = (, ,)
len(fruits_tpl)
fruits tpl|1
fruits tpl|:2
fruits tpl
fruits tpl

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuple Packing and Unpacking

* In Python, there is a very powerful tuple assignment feature
that assigns the right-hand side values to the left-hand side

» Packing: From values to a tuple
» Unpacking: From a tuple to a variable

Packing: Comma-separated right-side
values are converted to a tuple.

v N\
values = 123, , -9.5

print(values) # (123, 'crayon', -9.5)
type(values) # <class 'tuple'>

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Tuple Packing and Unpacking

Unpacking: Comma-separated left-side values are
unpacked automatically from a tuple.

V' N\
a, b, c =
type(a) #
type(b) #
type(c) #

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

values
<class
<class
<class

a=123, b='crayon', ¢=-9.5
int'>

'str'>

'float'>

10

Ignoring Values When Unpacking

« Sometimes, we do not care for all values in a tuple we are unpacking

ignore underscore

d, , £ = values
print(d, f)

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

11

n
w
|
o
=
<
X
i

Packing&Unpacking Example: Swap Values

Using temporary variable

x =1
= 99
temp = X # temp =1
X =Y # X = 99
y = temp #y =1

print(x, y) # 99 1

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

12

n
w
|
o
=
<
X
i

Packing&Unpacking Example: Swap Values

Using tuple packing and unpacking

=1
y = 99
Packing into
Unpacking to x, y a tuple (99, 1)
L_.X, y =Y, X 4)

print(x, y) # 99 1

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

13

Reminder. Built-in Function enumerate()

Allows to iterate over an object and to keep count of iterations

Takes two arguments
« A sequence or an object that supports iteration
« Start (optional, default zero): iterates starting from this number

Returns:

« Enumerate object, which you can convert to a list or tuple using
list() andtuple() methods

Typical use case
« (Obtain an index of an element of a list or a tuple besides its value

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

14

Tuples and Enumerate Neat Way of Traversing Sequences

« To extract the index of an element of a list (or tuple) besides its
value, the most Pythonic way is to use enumerate()

» Note the use of tuples and unpacking in the example below

fruits 1st = | , ,]

for index, fruit (fruits 1st):
print(index, fruit)

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

15

Tuples and Enumerate Neat Way of Traversing Sequences

« To extract the index of an element of a list (or tuple) besides its
value, the most Pythonic way is to use enumerate()

fruits 1lst = ['raspberry’, 'mango’, "kiwi']
enumerate fruits = enumerate(fruits 1lst)
Returns an object of enumerate type

print(enumerate fruits) # Unusable value printed

Convert the enumerate object to a list to print it
enumerate fruits 1 = list(enumerate fruits)

[(9, 'raspberry'), (1, 'mango'), (2, 'kiwi')]

Note that every element of this list is a tuple

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Sets

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

R R E NN R e
S e e s e s omom o mEoEoEEEEEEEE N —
............. EEEEER RNy

& % B B W w e wee I BN ERERERERERN
...... T @ m oW W om WO W OE S N NN

............ I EEEREENRERRERSE
r 5 lIalIIIIEIlII—
Il.!llllﬁl.'..._
q--illl.l...-!
. -n-.lll.ll.i_

---.Illllllﬁill....

PR N srsEEEEEEAEENENN ___
------ -un.ﬁ&ﬂ&'&‘ll?-“’.-.
HEEEENEEDE = =
....... .-.-u-l-nllllllli-__
..----lllllillilll__

s » s s s EENENNEENENNENENENDNES

i rr s s s mE N EESEENEEEEEEE
. l-llilll....-..._
" s s I EEEEN

IIIIIIIIIIIIIIII E E N W

.................. L B] —
"=

llllllllllllllllll =

" s o om

............... ———

© kras99 / Adobe Stock

Sets

» Unordered collections of distinct elements
« Sets are delimited by curly braces

my set = {1, 2, 3, s s

type(my set)

* When to use sets?
« When having duplicates is not an option
« When performing set operations is the aim

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

18

n
w
|
o
=
<
X
i

Example: Removal of Duplicates from a List

 Write a function that takes a list of characters and returns another
ist containing all the original list's unique elements.
Sort the returned list in the alphabetic order.

def remove duplicates(input list):
return list(set(input_list))

1

1 without repetitions = remove duplicates(l)

list('johnsnow') # ["7', ‘o', 'h', 'n', "s', 'n', 'o', 'w']

print(sorted(l_without repetitions))
#[Ihl) Ijl’ Inl’ 'O', IS', lwl]

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

19

Common Set Operations: Creating Sets

Creating an empty set
my set = set()

Creating a set from a list
my set = set([1, 2, 2, 3, 'a', 'a', 'b'])

#{1, 2, 3, 'b’, "a }\Unordered and unique elements.

To order, use the built-in sorted() function.

But, beware, integers and strings cannot
be compared (typeError will be raised).
Also, note that sorted() returns a list.

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

20

n
w
|
o
=
<
X
i

Common Set Operations

Finding the set size
len(my set) # 5

Figuring out if an element is in the set
3 in my _set # True

c' in my_set # False

Adding an element to a set
my set.add('c’) # {1, 2, 3, 'b', 'c¢', 'a';}

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

21

Common Set Operations: Removing Elements

Removing a specific element
my set.discard('c') # {1, 2, 3, 'b"', 'a'}

discard() does not raise an error if
the element does not exist

n
w
|
o
=
<
X
i

Removing an arbitrary element

my_ set.pop()

pop() removes and returns an arbitrary element
from the set. If the set is empty, it raises an
error KeyError: 'pop from an empty set’

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Set Operations

« Four binary operations on sets:
* Intersection
« Union
« Difference
« Symmetric difference

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

23

n
w
|
o
=
<
X
i

Intersection &: Elements in Both Sets

pirate = set(' jacksparrow")

#{IpI, IOI, Ikl) Ir‘I, IaI, IWI, ISI, Ijl’ ICI}
king in_the north = set('johnsnow")

#{IOI, Ihl’ le, 'S', Ijl, lnl}

Intersection = elements present in both sets

pirate & king in the north
#{IWI,'S','j',IOI}

4 elements

arbitrary order

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

24

Union [: All Unique Elements in The Two Sets

pirate = set(' jacksparrow")

#{IpI, lOlJ lkl) Ir‘lJ lal, IWI, ISIJ IJ'IJ ICI}
king in the north = set(johnsnow)

#{IOI, lhl, IWI, ISI, J s n}

n
w
|
o
=
<
X
i

Union, elements present in one set or the other
my union = pirate | king in_the north

#{Ir‘l J lpl, IS s W,
Inl, Cl OI, Ikl, laI, lhl} .-

11 elements, arbitrary order

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic 5

n
w
|
o
=
<
X
i

Difference -: Elements in One but Not Other Set

pirate = set(' jacksparrow")

#{IpI, IOI, lkl, Ir‘l, lal., IWI, IS', ljl, ICI}
king in_the north = set('johnsnow")

#{'O', Ihl) le, ISIJ IJ°IJ lnl}

Difference = set - intersection
pirate - king in the north
#{lkl, 'PI’ Ipl, ICIJ Ial}

5 elements, arbitrary order

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

26

n
w
|
o
=
<
X
i

Symmetric difference *: All But The Intersection

reminder
#union: {lr‘l,IjI,IpI,lSl,lwl,lnl,ICl,IOI,I|<I,IaI,lhl}
intersection: {'w','s','j','0"'}

Symmetric difference = union - intersection
pirate * king in the north
#{Ikl) lr‘l, lalJ Ipl, ICI, IrllJ Ihl}

7 elements, arbitrary order -

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

27

Summary

« Tuples are immutable sequences of objects e
« Brackets (parentheses) delimit tuples o ___._
« Tuples are handy for packing and unpacking values '""-F’:'-;?'-,
« enumerate() operates on tuples N -

B s-uilll_—
. m IIIIIII.-

« Sets are unordered collections of distinct obJects _
« Curly brackets delimit sets LT _—'i;:
- When printed, set elements are unordered B,
+ Useful when intersection or difference of sets is desired e

+ Elegant removal of duplicates in a list

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock 28

Next topic:
Dictionaries

	Information, Computation, Communication�Learning Python
	Agenda
	Tuples
	Tuples vs. Lists
	Tuples vs Lists
	Tuples are Immutable Cannot be Modified
	Tuples are Immutable
	How to Work with Tuples?
	Tuple Packing and Unpacking
	Tuple Packing and Unpacking
	Ignoring Values When Unpacking
	Packing&Unpacking Example: Swap Values
	Packing&Unpacking Example: Swap Values
	Reminder: Built-in Function enumerate()
	Tuples and Enumerate Neat Way of Traversing Sequences
	Tuples and Enumerate Neat Way of Traversing Sequences
	Sets
	Sets
	Example: Removal of Duplicates from a List
	Common Set Operations: Creating Sets
	Common Set Operations
	Common Set Operations: Removing Elements
	Set Operations
	Intersection &: Elements in Both Sets
	Union I: All Unique Elements in The Two Sets
	Difference -: Elements in One but Not Other Set
	Symmetric difference ^: All But The Intersection
	Summary
	Slide Number 29

