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Problem 1 (Gaussian bandits with unknown mean and variance — 10 pts). Consider the

standard setup of the bandit problem we discussed in the course. We assumed that the

K arms have unknown means and are all 1 -subgaussian. For the upper confidence bound

(UCB) algorithm, after sampling each arm once in the beginning, in each subsequent round

we decided on the arm according to

argmaxk µ̂k,t−1 +

√
2

Tk(t− 1)
ln

1

δt︸ ︷︷ ︸
decision metric

. (1)

Here, Tk(t−1) denotes the number of times we chose arm k up to and including time t−1 ,

µ̂k,t−1 is the empirical mean of arm k at time t− 1 , using the relevant Tk(t− 1) samples,

and δt denotes the confidence we want to have at time t .

a) [2 pts] Write down the decision metric if arm k , 1 ≤ k ≤ K , is σ2
k -subgaussian and the

parameters {σ2
k} are known?

In general the parameters {σ2
k}Kk=1 are unknown. However, we can estimate their values from

the samples. More precisely, if we are given iid samples W1, · · · ,Wn let µ̂n = 1
n

∑n
i=1Wn

and let σ̂2
n = 1

n−1

∑n
i=1(Wi− µ̂n)

2 be the sample mean and the sample variance, respectively.

It is then tempting to conjecture that we can construct an UCB algorithm by replacing the

variance terms σ2
k in point (a) above with their empirical values σ̂2

k,t−1 and possibly change

the involved constants.

We will now confirm this conjecture for the concrete case where all arms have a Gaussian

distribution. More precisely, we assume that arm k , 1 ≤ k ≤ K , is distributed according

to N (µk, σ
2
k) . The parameters {(µk, σ

2
k)}Kk=1 are unknown.

b) [5 pts] Write down the decision metric for this case.

HINT: If we are given iid samples W1, · · · ,Wn from a Gaussian distribution with parameters

(µ, σ2) , and (µ̂n, σ̂
2
n) are the respective empirical quantities, then

Sn =
µ̂n − µ

σ̂n/
√
n

is distributed according to the so-called student t -distribution with n−1 degrees of freedom.

Note that the distribution of Sn does not depend on (µ, σ2) and is symmetric around 0 .

Further, the confidence values for this distribution can be looked up in tables or can be

computed. I.e., you can asssume that for any δ ∈ [0, 1] the real numbers αδ,n , so that

P{Sn > αδ,n} = δ

are known.

c) [3 pts] Show that the distribution of Sn indeed does not depend on (µ, σ2) .
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HINT: The distribution of (µ̂n−µ) is Gaussian with mean zero and variance σ2/n . Further,

(n− 1)σ̂2
n/σ

2 follows the so-called χ2 distribution with n− 1 degrees of freedom. Note that

the χ2 distribution does not depend on (µ, σ2) . Further, (µ̂n − µ) and (n − 1)σ̂2
n/σ

2 are

independent.

Solution 1.

a) In this case we would decide on the next arm according to

argmaxk µ̂k,t−1 + σk

√
2

Tk(t− 1)
ln

1

δt︸ ︷︷ ︸
decision metric

.

b) For a given value δ > 0 (the confidence value) and n ∈ N (the degrees of freedom), let

αδ,n be the value so that P{Sn > αδ,n} = δ according to the student t -distribution with n

degrees of freedom. This value can be looked up in a table or computed numerically.

According to the hint, µ̂n−µ
σ̂n/

√
n

has a student t -distribution with n − 1 degrees of freedom.

Hence

P{ µ̂n − µ

σ̂n/
√
n
> αδ,n−1} = δ.

By the symmetry of this distribution we have

P{ µ̂n − µ

σ̂n/
√
n
≥ −αδ,n−1} = 1− δ.

This can be rewritten as

P{µ ≤ µ̂n +
αδ,n−1σ̂n√

n
} = 1− δ.

In turn this is equivalent to

P{µ > µ̂n +
αδ,n−1σ̂n√

n
} = δ.

Hence we see that the decision should be taken according to

argmaxk µ̂k,t−1 +
αδ,Tk(t−1)−1σ̂k,t−1√

Tk(t− 1)
.

This is of the same form as our original decision metric, just with a different constant and

we swapped out the true standard deviaiton for the empirical standard deviation.
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c) We have

Sn =
µ̂n − µ

σ̂n/
√
n
=

(µ̂n − µ)/σ

σ̂n/(σ
√
n)

.

Now note that by the hint, the numerator and the denominator are independent random

variables and that the distributions of those random variables do not depend on (µ, σ2) .

Hence, Sn has a distribution that does not depend on (µ, σ2) .
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Problem 2 (KL Divergence between mixtures — 8 pts). Mixture distributions are a key

modeling tool and appear in many guises in Data Science. In this problem, we derive a

bound on the KL divergence between mixture distributions.

a) [5 pts] Consider two mixture distributions of K components, given as

PY (y) =
K∑
i=1

µiPi(y) and QY (y) =
K∑
i=1

νiQi(y), (2)

where 0 ≤ µi ≤ 1 and 0 ≤ νi ≤ 1 and
∑

i µi =
∑

i νi = 1. Here, Pi(y) and Qi(y) are

distributions over an alphabet Y . Prove that

D(PY ∥QY ) ≤ D(µ∥ν) +
K∑
i=1

µiD(Pi∥Qi), (3)

where D(µ∥ν) denotes the KL divergence between the distributions (µ1, µ2, . . . , µK) and

(ν1, ν2, . . . , νK). Hint: Recall conditional KL divergence. Also, it may be helpful to introduce

a random variable X distributed over the set X = {1, 2, . . . , K} and rewrite PY (y) in the

form PY (y) =
∑

x∈X PX(x)PY |X(y|x), for appropriately chosen PX(x) and PY |X(y|x).

b) [3 pts] Give examples where the bound is good and where the bound is bad. The more

extreme your examples, the more points you get. The less trivial your examples, the more

points you get. Hint: Try K = 2.

Solution 2. (a) To connect to the class, let us change notation. Specifically, let us introduce

a random variable X distributed over the alphabet {1, 2, . . . , K}. Define

PX(x = i) = µi and PY |X(y|x = i) = Pi(y) (4)

and then, of course, PX,Y (x, y) = PX(x)PY |X(y|x). The resulting marginal distribution

of Y is then

PY (y) =
∑
x∈X

PX(x)PY |X(y|x) =
K∑
i=1

µiPi(y), (5)

exactly as in the problem statement. By the same token, define

Q(x = i) = νi and Q(y|x = i) = Qi(y) (6)

and QX,Y (x, y) = QX(x)QY |X(y|x). The resulting marginal distribution of Y is then

QY (y) =
∑
x∈X

QX(x)QY |X(y|x) =
K∑
i=1

νiQi(y), (7)

exactly as in the problem statement.
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Next, let us rewrite the claim that needs to be proved in terms of the new notation. To

this end, we recall Homework 2, Problem 3, which introduced Conditional KL Diver-

gence. From that homework problem, we can write:

D(PY |X∥QY |X |PX) =
∑
x∈X

PX(x)D(PY |X(·|x)∥QY |X(·|x)) (8)

=
K∑
i=1

µiD(Pi∥Qi). (9)

Moreover, we can write

D(PX∥QX) = D(µ∥ν). (10)

Combining terms, the statement to be proved can thus be rewritten as

D(PY ∥QY ) ≤ D(PX∥QX) +D(PY |X∥QY |X |PX). (11)

Note that this is almost the same statement as what you did in Homework 2, Problem

3, Part (c), but not exactly. In fact, in Homework 2, Problem 3, Part (c), we considered

the case PX = QX . The proof here proceeds along the same lines. Namely, we can use,

exactly as in Homework 2, Problem 3, Part (a), the fact that

D(PX,Y ∥QX,Y ) = D(PX∥QX) +D(PY |X∥QY |X |PX). (12)

The remaining part is to show that indeed, D(PY ∥QY ) ≤ D(PX,Y ∥QX,Y ). This is, of

course, a direct application of the data processing inequality for KL divergence. In fact,

the proof technique from Homework 2, Problem 3, Part (c) works without any changes.

Namely, define the kernel

W (ỹ|x, y) =

{
1, if ỹ = y,

0, otherwise.
(13)

Then we have

PỸ (ỹ) =
∑
x,y

PXY (x, y)W (ỹ|x, y) = PY (ỹ) (14)

and

QỸ (ỹ) =
∑
x,y

QXY (x, y)W (ỹ|x, y) = QY (ỹ) (15)

Hence, we have, by the data processing inequality for KL divergence,

D(PXY ∥QXY ) ≥ D(PỸ ∥QỸ ) = D(PY ∥QY ). (16)

This completes the proof.
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(b) Give examples where the bound is good and where the bound is bad.

Where it is good:

• Let Pi ≡ P1 for all i. Let Qi ≡ Q1 for all i. Then, the bound reads

D (P1∥Q1) ≤ D(µ∥ν) +D(P1∥Q1). (17)

We can see that in this case, the bound is tight if and only if µi = νi for all i.

• Let Pi = Qi for all i. Then, the bound reads

D

(
K∑
i=1

µiPi(y)

∥∥∥∥∥
K∑
i=1

νiPi(y)

)
≤ D(µ∥ν). (18)

If we additionally assume µi = νi for all i, then both the LHS as well as the RHS

are zero, and thus, the bound is tight.

Where it is bad: The main insight is that in our bound, it can happen that the LHS is

finite but the RHS is infinite:

• Let Pi ≡ P1 for all i. Let Qi ≡ Q1 for all i. Then, the bound reads

D (P1∥Q1) ≤ D(µ∥ν) +D(P1∥Q1). (19)

Now, if there is a single i for which µi > 0 but νi = 0, then D(µ∥ν) = ∞. So in

this case, the bound is as loose as it gets.

• Alternatively, select P1 and Q1 such that there exists a value of y such that

P1(y) > 0 but Q1(y) = 0. Then, D(P1∥Q1) = ∞, and thus, choosing µ1 > 0,

this is enough to make the RHS of our bound infinite. To complete the example,

we now select Q2 such that the LHS of our bound is finite. Namely, select it such

that Q2(y) > 0 for all y in the alphabet of Y and select ν2 > 0. This is enough

to ensure that the marginal distribution QY (y) > 0 for all y, and thus, the LHS

of our bound is finite.

• Finally, the challenge is if we can make the LHS equal to zero and the RHS infinite

— the most extreme case. This is actually not hard at all. For example, as

follows. Let K = 2. Let the alphabet of Y be Y = {1, 2, . . . ,M}, where M is

even. Let P1(y) =
2
M

for y = 1, 2, . . .M/2, and zero otherwise. Let P2(y) =
2
M

for y = M/2 + 1,M/2 + 2, . . .M, and zero otherwise. Let Q1(y) = P2(y) and

Q2(y) = P1(y). Let µ1 = µ2 = ν1 = ν2 = 1
2
. With this, we find that P (y) and

Q(y) are both the uniform distribution, making the LHS of our bound zero. But

D(P1∥Q1) = ∞, making the RHS of our bound infinite.
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Problem 3 (Estimation — 10 pts). Let S ∈ [0, 1] be distributed with a Beta distribution

with parameters (1/2, 1/2), which, as we have seen in class, is p(s) = 1
π
s−

1
2 (1 − s)−

1
2 .

We make n observations X1, X2, . . . , Xn that are (conditionally) independent Bernoulli (S)

random variables.

a) [5 pts] Calculate the conditional distribution p(s|x1, x2, . . . , xn). Express it in terms of

the integer t, which is the number of ’1’s in the sample (x1, x2, . . . , xn).

Hint: For a, b ∈ R+, we have
∫ 1

0
ya−1(1−y)b−1dy = Γ(a)Γ(b)

Γ(a+b)
, where Γ(·) denotes the Gamma

function.

b) [5 pts] We would like to estimate S from X1, X2, . . . , Xn such as to minimize the mean-

squared error E[(S − Ŝ(X1, X2, . . . , Xn)
2]. Find the optimum estimate Ŝ(X1, X2, . . . , Xn).

Simplify your result as much as possible.

Hint: The Gamma function satisfies the property, for c ∈ R+, that Γ(c+ 1) = cΓ(c).

Solution 3. The MMSE estimator is the conditional expectation. Let t denote the number

of ones in the sample (x1, x2, . . . , xn).

Let us first find the conditional distribution p(s|x1, x2, . . . , xn).

p(s, x1, x2, . . . , xn) = p(s)p(x1, x2, . . . , xn|s) (20)

=
s−

1
2 (1− s)−

1
2

π
st(1− s)n−t (21)

=
1

π
st−

1
2 (1− s)n−t− 1

2 (22)

and thus,

p(x1, x2, . . . , xn) =
1

π

∫ 1

0

st−
1
2 (1− s)n−t− 1

2ds (23)

=
1

π

Γ(t+ 1
2
)Γ(n− t+ 1

2
)

Γ(n+ 1)
(24)

Thus,

p(s|x1, x2, . . . , xn) =
p(s)p(x1, x2, . . . , xn|s)

p(x1, x2, . . . , xn)
(25)

=
Γ(n+ 1)

Γ(t+ 1/2)Γ(n− t+ 1/2)
st−1/2(1− s)n−t−1/2 (26)

8



To calculate the conditional mean, we now proceed as follows:

E[S|X1 = x1, X2 = x2, . . . , Xn = xn]

=

∫ 1

0

sp(s|x1, x2, . . . , xn)ds (27)

=
Γ(n+ 1)

Γ(t+ 1/2)Γ(n− t+ 1/2)

∫ 1

0

s · st−1/2(1− s)n−t−1/2ds (28)

=
Γ(n+ 1)

Γ(t+ 1/2)Γ(n− t+ 1/2)

∫ 1

0

st+1/2(1− s)n−t−1/2ds (29)

=
Γ(n+ 1)

Γ(t+ 1/2)Γ(n− t+ 1/2)
· Γ(t+ 3/2)Γ(n− t+ 1/2)

Γ(n+ 2)
(30)

=
Γ(n+ 1)

Γ(n+ 2)
· Γ(t+ 3/2)

Γ(t+ 1/2)
(31)

=
t+ 1/2

n+ 1
, (32)

which, intriguingly, is exactly the “add-1/2” estimator that we have studied (from a different

perspective) in the chapter on Distribution Estimation...
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