
Information, Computation, Communication

Learning Python

Functions – Part II

1CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Agenda

• Functions in brief

• Local and global variables
• Example 1 and 2 and 3

• Example with lists

• Variable scope, summary

• Recursive functions
• Definition

• Program flow

• Advantages and disadvantages

• Example

• Importing functions from files

2CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

Functions – In Brief

• Group lines of code in a way that allows reuse without repetition
• High code reuse

• High code readability

• Low code redundancy

• Low number of error sources

• High code maintainability

3CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def name(arg1, arg2, …, argN):
code
return result

Program Flow When Calling a Function

4

function call

code statement

initialize args

func body

func body

return result

code statement

code statement

Function receives arguments

Function returns the result

Body of the script
or another function

© kras99 / Adobe Stock

Local and Global Variables

5CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Local Variables

• A variable is local if it is created in the function body

• Function arguments are considered local variables

• Local variables are created when the function is called
and destroyed when the function terminates

• Function can read or modify a variable created elsewhere
(outside of it) only if the following is satisfied:
• The variable name is preceded by the keyword global or

• The variable type is list, set, or dictionary

6CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 1: Local vs. Global Variables

What does this code output?

a = 1

b = 100

c = -55

def f_sum(a):

b = 99

return a + b

print(a, b, c)

print(f_sum(c), a, b, c)

7CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 1: Local vs. Global Variables

What does this code output?

a = 1

b = 100

c = -55

def f_sum(a): # f_local_a = -55

b = 99 # f_local_b = 99

return a + b # f_local_a + f_local_b = 44

print(a, b, c) # 1 100 -55

print(f_sum(c), a, b, c) # 44 1 100 -55

8CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 2: Local vs. Global Variables

What does this code output?

a = 1

b = 100

def f_sub(a):

global b

a += 1

return a - b

print(a, b)

print(f_sub(a), a, b)

9CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 2: Local vs. Global Variables

What does this code output?

a = 1

b = 100

def f_sub(a): # f_local_a = 1

global b # b = 100

a += 1 # f_local_a = 2

return a – b # f_local_a – b = -98

print(a, b) # 1 100

print(f_sub(a), a, b) # -98 1 100

10CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 3: Local vs. Global Variables

What does this code output?

a = 1

b = 100

def f_sub(a):

global b

b += 1

return a - b

print(a, b)

print(f_sub(a), a, b)

11CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 3: Local vs. Global Variables

What does this code output?

a = 1

b = 100

def f_sub(a): # f_local_a = 1

global b # b = 100

b += 1 # b = 101

return a – b # a - b = 1 – 101 = -100

print(a, b) # 1 100

print(f_sub(a), a, b) # -100 1 101

12CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

What if Arguments are Lists/Sets/Dictionaries?
Mutable Types

Then, functions can modify lists/sets/dictionaries created "outside"

def f_extender(my_list, factor):

my_list *= factor

numbers = ['N', 0, 'v']

f_extender(numbers, 2)

print(numbers)

f_extender(numbers, 2)

print(numbers)
13CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

What if Arguments are Lists/Sets/Dictionaries?
Mutable Types

Then, functions can modify lists/sets/dictionaries created "outside"

def f_extender(my_list, factor):

my_list *= factor

numbers = ['N', 0, 'v']

f_extender(numbers, 2) # ['N', 0, 'v', 'N', 0, 'v']

print(numbers) # numbers was changed by f_extender()

f_extender(numbers, 2) # ['N',0,'v','N',0,'v','N',0,'v','N',0,'v']

print(numbers) # numbers was changed by f_extender()
14CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Variable Scope, Summary

Function argument types
• Booleans, integers, strings, floating-point numbers

• Equivalent to local variables

• Local variables do not exist before the function is called

• Local variables are destroyed after the function returns

• Only the code inside the function can use them

• Lists, dictionaries, sets
• Function can modify the external variable passed as the argument

• All changes made by the function are persistent
(i.e., visible after the function returns)

Global variables
• Created outside of functions but can be read/modified by the code

inside the function if preceded by keyword global

15CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Recursive Functions

16CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

Recursive Functions

• Recursive functions are the functions that call themselves

17CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def f_name():
...
f_name()
...

f_name()

Recursive
function call

Normal, regular
function call

Recursive Functions

• Recursive functions are the functions that call themselves

• Every recursive function must have a base condition that stops
recursion, or else the function calls itself indefinitely

• In Python, by default, max recursive calls is limited to 1000;
past that number, RecursionError occurs

18CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Pros and Cons of Recursive Functions

• Advantages
• Code is clean and elegant

• Complex task is broken into simpler subproblems

• Disadvantages
• Sometimes, the logic behind recursion is hard to follow

• Recursive calls are expensive: take up memory and run time

• Hard to debug

19CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Recursive Functions: Program Flow

20CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

code statement

code statement

Recursive function

code statement

code statement

1

Recursive function

Recursive function

Recursive function

2

3

4

5

6

7

8

(base case)

E
X
A
M
P
L
E
S

Example: Recursion

21CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

f(a, b) is recursive function to calculate the sum of elements in list a,
from index b down to index 3. What does this code output?

def f(a, b):
Base case
if b < 3: # if 'b' < 3, stop the recursion and return 0

return 0
Recursive step: add the element at index 'b' to
the result of calling 'f' with 'b-1'
res = a[b] + f(a, b - 1)
return res

Example list of integers
s = [2, 7, 1, 4, 6, 9, 4, 3, 0, 0]
Call the function 'f' starting from index 8 and print the result
print(f(s, 8))

E
X
A
M
P
L
E
S

Recursion: Solution

s = [2, 7, 1, 4, 6, 9, 4, 3, 0, 0]

1) f(s, 8) = s[8] + f(s, 7)

2) f(s, 7) = s[7] + f(s, 6)

3) f(s, 6) = s[6] + f(s, 5)

4) f(s, 5) = s[5] + f(s, 4)

5) f(s, 4) = s[4] + f(s, 3)

6) f(s, 3) = s[3] + f(s, 2)

7) f(s, 2) = 0

Once we have reached the end of the recursion, we can start
computing the intermediate values

22CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def f(a, b):
if b < 3:

return 0
res = a[b] + f(a, b - 1)
return res

s = [2, 7, 1, 4, 6, 9, 4, 3, 0, 0]
print(f(s, 8))

E
X
A
M
P
L
E
S

Recursion: Solution

s = [2, 7, 1, 4, 6, 9, 4, 3, 0, 0]

1) f(s, 8) = s[8] + f(s, 7)

2) f(s, 7) = s[7] + f(s, 6)

3) f(s, 6) = s[6] + f(s, 5)

4) f(s, 5) = s[5] + f(s, 4)

5) f(s, 4) = s[4] + f(s, 3)

6) f(s, 3) = s[3] + f(s, 2)

7) f(s, 2) = 0

Once we have reached the end of the recursion, we can start
computing the intermediate values, one by one

23CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

1) f(s, 8) = s[8] + f(s, 7) = 0 + 26 = 26

2) f(s, 7) = s[7] + f(s, 6) = 3 + 23 = 26

3) f(s, 6) = s[6] + f(s, 5) = 4 + 19 = 23

4) f(s, 5) = s[5] + f(s, 4) = 9 + 10 = 19

5) f(s, 4) = s[4] + f(s, 3) = 6 + 4 = 10

6) f(s, 3) = s[3] + f(s, 2) = 4 + 0 = 4

7) f(s, 2) = 0

© kras99 / Adobe Stock

Importing Functions

24CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Importing Functions from Files

• Importing one function from a file

from file_name import function_name

• Importing several functions from a file

from file_name import function1, function2

• Importing all functions from a file

from file_name import *

Important: The file should reside in the same directory as your script

25CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

x = multiply(3, 4) # x = 12

x = multiply(2, 3) # x = 6

Importing Functions from Files

def multiply (what, times):

return what * times

26CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

funcMultiply.py

myScript.py

How to link this function call to the correct function definition?

E
X
A
M
P
L
E
S

x = multiply(3, 4) # x = 12

x = multiply(2, 3) # x = 6

Importing Functions from Files

def multiply (what, times):

return what * times

27CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

funcMultiply.py

myScript.py

from funcMultiply import multiply

Next topic:
Tuples and Sets

28CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

