

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 12 – Solutions

Exercise 1: Let V be a smooth vector field on a smooth manifold M, let $J \subseteq \mathbb{R}$ be an interval, and let $\gamma: J \to M$ be an integral curve of V. Prove the following assertions:

(a) Rescaling lemma: For any $a \in \mathbb{R}$, the curve

$$
\widetilde{\gamma} \colon \widetilde{J} \to M, \ t \mapsto \gamma(at)
$$

is an integral curve of the vector field $\widetilde{V} := aV$ on M, where $\widetilde{J} := \{t \in \mathbb{R} \mid at \in J\}.$

(b) Translation lemma: For any $b \in \mathbb{R}$, the curve

$$
\widehat{\gamma} \colon \widehat{J} \to M, \ t \mapsto \gamma(t+b)
$$

is also an integral curve of V on M, where $\hat{J} := \{t \in \mathbb{R} \mid t + b \in J\}.$

Solution:

(a) If $t \in \tilde{J}$, then

$$
\widetilde{\gamma}'(t) = a\gamma'(at) = aV_{\gamma(at)} = \widetilde{V}_{\widetilde{\gamma}(t)}.
$$

(b) If $t \in \widehat{J}$, then

$$
\widehat{\gamma}'(t) = \gamma'(t+b) = V_{\gamma(t+b)} = V_{\widehat{\gamma}(t)}.
$$

Exercise 2 (The Euler vector field): Consider the Euler vector field on \mathbb{R}^n , i.e., the vector field V on \mathbb{R}^n whose value at a point $x = (x^1, \ldots, x^n) \in \mathbb{R}^n$ is

$$
V_x = x^1 \frac{\partial}{\partial x_1}\bigg|_x + \ldots + x^n \frac{\partial}{\partial x_n}\bigg|_x.
$$

- (a) Check that V is a smooth vector field on \mathbb{R}^n .
- (b) Let $c \in \mathbb{R}$ and let $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be a smooth function which is *positively homo*geneous of degree c, i.e., $f(\lambda x) = \lambda^c f(x)$ for all $\lambda > 0$ and $x \in \mathbb{R}^n \setminus \{0\}$. Prove that $V f = cf.$

[Hint: Differentiate the above relation with respect to both x^i and λ .]

(c) Compute the integral curves of V .

Solution:

(a) Note that the component functions of V with respect to the standard coordinate frame for \mathbb{R}^n are linear, hence smooth. Therefore, V is a smooth vector field on \mathbb{R}^n by Proposition 7.2.

(b) Using the chain rule, we obtain

$$
\lambda^c \frac{\partial f}{\partial x^i}(x) = \frac{\partial}{\partial x^i} (\lambda^c f(x)) = \frac{\partial}{\partial x^i} (f(\lambda x)) = \lambda \frac{\partial f}{\partial x^i} (\lambda x)
$$
 (1)

and

$$
c\lambda^{c-1}f(x) = \frac{d}{d\lambda}(\lambda^c f(x)) = \frac{d}{d\lambda}(f(\lambda x)) = \sum_{i=1}^n x^i \frac{\partial f}{\partial x^i}(\lambda x).
$$
 (2)

Since

$$
(Vf)(x) = V_x f = \sum_{i=1}^n x^i \frac{\partial f}{\partial x^i}(x),
$$

we have

$$
(Vf)(\lambda x) = V_{\lambda x}f = \sum_{i=1}^{n} (\lambda x^{i}) \frac{\partial f}{\partial x^{i}}(\lambda x) \stackrel{(1)}{=} \lambda^{c} \sum_{i=1}^{n} x^{i} \frac{\partial f}{\partial x^{i}}(x) = \lambda^{c}(Vf)(x)
$$
(3)

but also

$$
(Vf)(\lambda x) = V_{\lambda x}f = \sum_{i=1}^{n} (\lambda x^{i}) \frac{\partial f}{\partial x^{i}}(\lambda x) \stackrel{(2)}{=} c\lambda^{c} f(x).
$$
 (4)

It follows now from (3) and (4) that

$$
(Vf)(x) = cf(x) \text{ for every } x \in \mathbb{R}^n \setminus \{(0,0)\}.
$$

(c) Since at $p = (0, \ldots, 0) \in \mathbb{R}^n$ we have $V_p = (0, \ldots, 0)$, the unique maximal integral curve of V starting at p is the constant curve $\gamma_0 \colon \mathbb{R} \to \mathbb{R}^n$, $t \mapsto (0, \ldots, 0)$.

Now, if $\gamma: J \to \mathbb{R}^n$ is a smooth curve, written in standard coordinates as

$$
\gamma(t) = (\gamma^1(t), \ldots, \gamma^n(t)),
$$

then the condition $\gamma'(t) = V_{\gamma(t)}$ for γ to be an integral curve of V translates to

$$
\dot{\gamma}^j(t) = \gamma^j(t) \text{ for every } 1 \le j \le n,
$$

which yields

$$
\gamma^j \colon J = \mathbb{R} \to \mathbb{R}, \ \gamma^j(t) = c_j e^t, \quad 1 \le j \le n,
$$

for some constants $c_j \in \mathbb{R}$. Therefore, the unique maximal integral curve of V starting at $p=(p^1,\ldots,p^n)\in\mathbb{R}^n$ is the smooth curve

$$
\gamma \colon \mathbb{R} \to \mathbb{R}^n, \ t \mapsto (p^1 e^t, \dots, p^n e^t).
$$

Observation: The Euler vector field V is a *complete* vector field on \mathbb{R}^n .

Remark. The statement from *Exercise* 2(b) is referred to as the Euler's homogeneous function theorem in the literature. In fact, it can also be shown that the converse to Euler's homogeneous function theorem holds: if $f \in C^{\infty}(\mathbb{R}^n \setminus \{(0,0)\})$ satisfies $Vf = cf$, where V is the Euler vector field on \mathbb{R}^n and $c \in \mathbb{R}$, then f is positively homogeneous of degree c.

Exercise 3:

(a) Consider the open submanifold

$$
M := \left\{ (x, y) \in \mathbb{R}^2 \mid x > 0, \ y > 0 \right\} \subseteq \mathbb{R}^2
$$

the map

$$
F\colon M\to M,\ (x,y)\mapsto \left(xy,\ \frac{y}{x}\right),
$$

and the smooth vector fields

$$
X \coloneqq x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \quad \text{ and } \quad Y \coloneqq y \frac{\partial}{\partial x}
$$

on M.

- (i) Show that F is a diffeomorphism, compute its Jacobian matrix $DF(x, y)$ at an arbitrary point $(x, y) \in M$, and determine its inverse F^{-1} .
- (ii) Compute the pushforwards F_*X and F_*Y of X and Y, respectively.
- (iii) Compute the Lie brackets $[X, Y]$ and $[F_*X, F_*Y]$.
- (iv) Find the maximal integral curve of Y starting at the point $(1, 1) \in M$ and describe its image geometrically.
- (b) Compute the flow of each of the following smooth vector fields on \mathbb{R}^2 :

(i)
$$
U = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y}
$$
.
\n(ii) $V = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$.
\n(iii) $W = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$.

Solution:

 $(a)(i)$ Define the map

$$
G\colon M\to M,\ (x,y)\mapsto \left(\sqrt{x/y},\ \sqrt{xy}\right).
$$

Note that G is smooth, as the functions

$$
(x, y) \in M \mapsto x/y \in \mathbb{R}_{>0}
$$
 and $(x, y) \in M \mapsto xy \in \mathbb{R}_{>0}$

are smooth (they are rational polynomials with non-vanishing denominator), and the function $u \in \mathbb{R}_{>0} \mapsto \sqrt{u} \in \mathbb{R}_{>0}$ is smooth as well. Observe also that

$$
(G \circ F)(x, y) = \left(\sqrt{\frac{xy}{y/x}}, \sqrt{xy \cdot \frac{y}{x}}\right) = (x, y)
$$

and

$$
(F \circ G)(x, y) = \left(\sqrt{\frac{x}{y}} \cdot \sqrt{xy}, \frac{\sqrt{xy}}{\sqrt{x/y}}\right) = (x, y)
$$

for all $(x, y) \in M$, so F and G are mutually inverse. Hence, F is a diffeomorphism with inverse $F^{-1} = G$. Furthermore, the Jacobian of F is given by

$$
DF(x, y) = \begin{pmatrix} y & x \\ -y/x^2 & 1/x \end{pmatrix}
$$
 for all $(x, y) \in M$.

(a)(ii) The push-forward F_*X of X is the unique vector field on M that is F-related to X, i.e.,

$$
dF_{(x,y)}\left(X_{(x,y)}\right) = (F_*X)_{F(x,y)} \text{ for all } (x,y) \in M.
$$

The matrix of $dF_{(x,y)}$ with respect to the bases provided by $\partial/\partial x$ and $\partial/\partial y$ is precisely $DF(x, y)$. Since X is given with respect to this basis by $(x, y)^T$ and since

$$
\begin{pmatrix} y & x \ -y/x^2 & 1/x \end{pmatrix} \cdot \begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} 2xy \ 0 \end{pmatrix},
$$

we obtain that

$$
(F_*X)_{F(x,y)} = 2xy \left. \frac{\partial}{\partial x} \right|_{F(x,y)}.
$$

Replacing (x, y) by $G(x, y)$ yields

$$
(F_*X)_{(x,y)} = 2x \left. \frac{\partial}{\partial x} \right|_{(x,y)},
$$

and thus $F_*X = 2x \frac{\partial}{\partial x}$.

Similarly, since Y is given by $(y, 0)^T$ with respect to the standard basis and since

$$
\begin{pmatrix} y & x \ -y/x^2 & 1/x \end{pmatrix} \cdot \begin{pmatrix} y \ 0 \end{pmatrix} = \begin{pmatrix} y^2 \ -y^2/x^2 \end{pmatrix},
$$

we obtain

$$
(F_*Y)_{F(x,y)} = y^2 \left. \frac{\partial}{\partial x} \right|_{F(x,y)} - \frac{y^2}{x^2} \left. \frac{\partial}{\partial y} \right|_{F(x,y)}.
$$

Replacing (x, y) by $G(x, y)$ yields

$$
(F_*Y)_{(x,y)} = xy \left. \frac{\partial}{\partial x} \right|_{(x,y)} - y^2 \left. \frac{\partial}{\partial y} \right|_{(x,y)},
$$

and thus $F_*Y = xy\frac{\partial}{\partial x} - y^2\frac{\partial}{\partial y}$.

Alternatively, working as in the solution of [*Exercise Sheet* 11, *Exercise* $2(d)(ii)$] and using coordinates (u, v) in the codomain, we compute that

$$
DF(G(u, v)) = \begin{pmatrix} \sqrt{uv} & \sqrt{\frac{u}{v}} \\ -\frac{\sqrt{uv}}{\frac{u}{v}} & \sqrt{\frac{v}{u}} \end{pmatrix},
$$

as well as

$$
X_{G(u,v)} = \sqrt{\frac{u}{v}} \frac{\partial}{\partial x}\bigg|_{G(u,v)} + \sqrt{uv} \frac{\partial}{\partial y}\bigg|_{G(u,v)} \text{ and } Y_{G(u,v)} = \sqrt{uv} \frac{\partial}{\partial x}\bigg|_{G(u,v)},
$$

whence

$$
(F_*X)_{(u,v)} = 2u \frac{\partial}{\partial u}\Big|_{(u,v)}
$$
 and $(F_*Y)_{(u,v)} = uv \frac{\partial}{\partial u}\Big|_{(u,v)} - v^2 \frac{\partial}{\partial v}\Big|_{(u,v)}.$

(a)(iii) By [*Exercise Sheet* 11, *Exercise* 4(a)] we have

$$
[X,Y] = \left(\underbrace{\left(x \frac{\partial y}{\partial x} - y \frac{\partial x}{\partial x} \right)}_{=-y} + \underbrace{\left(y \frac{\partial y}{\partial y} - 0 \cdot \frac{\partial x}{\partial y} \right)}_{=y} \right) \frac{\partial}{\partial x} + \left(\underbrace{\left(x \frac{\partial 0}{\partial x} - y \frac{\partial y}{\partial x} \right)}_{=0} + \underbrace{\left(y \frac{\partial 0}{\partial y} - 0 \cdot \frac{\partial y}{\partial y} \right)}_{=0} \right) \frac{\partial}{\partial y} = 0.
$$

Now, as $[F_*X, F_*Y] = F_*[X, Y]$ by [*Exercise Sheet* 11, *Exercise* 6(b)], we conclude that

$$
[F_*X, F_*Y] = 0.
$$

One can also see this with a direct calculation, using part (b) and part (a) of [Exercise Sheet 11, Exercise 4]; namely, we have

$$
[F_*X, F_*Y] = \left(\underbrace{\left(2x \frac{\partial(xy)}{\partial x} - xy \frac{\partial(2x)}{\partial x} \right) + \left(0 \cdot \frac{\partial(xy)}{\partial y} + y^2 \frac{\partial(2x)}{\partial y} \right) \right) \frac{\partial}{\partial x}}_{=0} + \left(\underbrace{\left(2x \frac{\partial(-y^2)}{\partial x} - xy \frac{\partial 0}{\partial x} \right) + \left(0 \cdot \frac{\partial(-y^2)}{\partial y} + y^2 \cdot \frac{\partial 0}{\partial y} \right) \right) \frac{\partial}{\partial y}}_{=0} = 0.
$$

(a)(iv) If $\gamma: J \to \mathbb{R}^2$ is a smooth curve in M, written in coordinates as $\gamma(t) = (\gamma^1(t), \gamma^2(t)),$ then the condition $\gamma'(t) = Y_{\gamma(t)}$ for γ to be an integral curve of Y translates to the system

$$
\frac{d\gamma^1}{dt}(t) = \gamma^2(t) \quad \text{and} \quad \frac{d\gamma^2}{dt}(t) = 0 \quad \text{for } t \in J,
$$

whence γ^2 is a constant function and γ^1 is an affine function. Since we also require that $\gamma(0) = (1, 1)$, we infer that the unique maximal integral curve of Y starting at $(1, 1) \in M$ is the smooth curve

$$
\gamma \colon J = (-1, +\infty) \to M \subseteq \mathbb{R}^2, \ t \mapsto (t+1, 1)
$$

whose image is the straight line segment $\{(x,1) \in \mathbb{R}^2 \mid x > 0\}.$

(b) To deal with all the cases we argue exactly as in the solution to *Exercise* $2(c)$. Thus, we only provide the details for the solution of (ii).

(b)(i) The unique maximal integral curve of U starting at $p = (p^1, p^2) \in \mathbb{R}^2$ is the smooth curve $\gamma: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (\frac{1}{2})$ $\frac{1}{2}t^2 + p^2t + p^1$, $t + p^2$, which is a smooth immersion. Hence, the flow of the complete vector field U is the map

$$
\theta_U : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2
$$
, $(t, (x, y)) \mapsto \left(\frac{1}{2}t^2 + yt + x, t + y\right)$.

(b)(ii) Observe first that the unique maximal integral curve of V starting at $p = (0,0)$ is the constant curve $\gamma_0: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (0,0)$; see *Exercise* 6(a). Now, if $\gamma: J \to \mathbb{R}^2$ is a smooth curve, written in standard coordinates as $\gamma(t) = (\gamma^1(t), \gamma^2(t))$, then the condition $\gamma'(t) = V_{\gamma(t)}$ for γ to be an integral curve of V translates to

$$
\dot{\gamma}^{1}(t) = \gamma^{1}(t), \n\dot{\gamma}^{2}(t) = 2\gamma^{2}(t).
$$

Therefore, there are constants $c_1, c_2 \in \mathbb{R}$ such that

$$
\gamma^1: J = \mathbb{R} \to \mathbb{R}, \ \gamma^1(t) = c_1 e^t, \n\gamma^2: J = \mathbb{R} \to \mathbb{R}, \ \gamma^2(t) = c_1 e^{2t},
$$

so the unique maximal integral curve of V starting at $p = (p^1, p^2) \in \mathbb{R}^2$ is the smooth curve $\gamma: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (p^1 e^t, p^2 e^{2t})$, which is in passing a smooth immersion for $p \in \mathbb{R}^2 \setminus \{(0, 0)\};$ see Exercise 6(b).

In conclusion, V is a complete vector field on \mathbb{R}^2 whose flow is the map

$$
\theta_V\colon \mathbb{R}\times\mathbb{R}^2\to\mathbb{R}^2,\,\,\big(t,(x,y)\big)\mapsto\big(xe^t,ye^{2t}\big).
$$

(b)(iii) The unique maximal integral curve of W starting at $p = (p^1, p^2) \in \mathbb{R}^2$ is the smooth curve $\gamma: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (p^1 e^t, p^2 e^{-t})$, which is a smooth immersion for $p \in \mathbb{R}^2 \setminus \{(0,0)\}.$ Hence, the flow of the complete vector field W is the map

$$
\theta_W \colon \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \ (t, (x, y)) \mapsto (xe^t, ye^{-t}).
$$

Exercise 4: Let θ : $\mathbb{R} \times M \to M$ be a smooth global flow on a smooth manifold M. Show that the infinitesimal generator V of θ is a smooth vector field on M, and that each curve $\theta^{(p)}: \mathbb{R} \to M$ is an integral curve of V.

Solution: By definition of the infinitesimal generator, we have

$$
V_p = \frac{d}{dt}\bigg|_{t=0} \theta(t, p) \text{ for all } p \in M. \tag{\star}
$$

First, to show that V is smooth, we apply *Proposition 7.4*: Given an open subset U of M, a smooth real-valued function f on U, and a point $p \in U$, we have

$$
Vf(p) = V_p f = \left(\frac{d}{dt}\bigg|_{t=0} \theta(t, p)\right) f
$$

=
$$
\frac{d}{dt}\bigg|_{t=0} (f \circ \theta)(t, p) = \frac{\partial}{\partial t}\bigg|_{(0, p)} (f \circ \theta)(t, p).
$$

Since the composite map $f \circ \theta$ is smooth, its partial derivative with respect to t is smooth as well. Thus, $V f(p)$ depends smoothly on p, which implies that V is smooth.

Next, fix $p \in M$ and $s \in \mathbb{R}$. We have to show that

$$
\left. \frac{d}{dt} \right|_{t=s} \theta(t,p) = V_{\theta(s,p)} \stackrel{(\star)}{=} \left. \frac{d}{dt} \right|_{t=0} \theta\big(t,\theta(s,p)\big).
$$

By definition of a flow, we have

$$
\theta(t+s,p) = \theta(t,\theta(s,p)),
$$

and by first differentiating the above relation with respect to t and then evaluating at $t = 0$ we obtain the required identity.

Exercise 5:

(a) Naturality of flows: Let $F: M \to N$ be a smooth map. Let $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$. Let θ be the flow of X and η be the flow of Y. Show that if X and Y are F-related, then for each $t \in \mathbb{R}$ it holds that $F(M_t) \subseteq N_t$ and $\eta_t \circ F = F \circ \theta_t$ on M_t :

(b) Diffeomorphism invariance of flows: Let $F: M \to N$ be a diffeomorphism. Show that if $X \in \mathfrak{X}(M)$ and if θ is the flow of X, then the flow of $F_*X \in \mathfrak{X}(N)$ is $\eta_t = F \circ \theta_t \circ F^{-1}$, with domain $N_t = F(M_t)$ for each $t \in \mathbb{R}$.

Solution:

(a) Denote by \mathcal{D}_X resp. \mathcal{D}_Y the flow domain of θ resp. η . Fix $t \in \mathbb{R}$ and let $p \in M_t$. Then $t \in \mathcal{D}_X^{(p)}$ and $\theta^{(p)}: \mathcal{D}_X^{(p)} \to M$ is the unique maximal integral curve of X starting at p. By [Exercise Sheet 11, Exercise 2(e)], $F \circ \theta^{(p)}$ is an integral curve of Y starting at $F(p)$. Hence, by maximality, we obtain that $\mathcal{D}_X^{(p)} \subseteq \mathcal{D}_Y^{(F(p))}$, and thus $t \in \mathcal{D}_Y^{(F(p))}$, which shows that $F(p) \in N_t$. In conclusion, $F(M_t) \subseteq N_t$.

Finally, we have

$$
F \circ \theta_t(p) = F(\theta(t,p)) \stackrel{(*)}{=} \eta(t, F(p)) = \eta_t \circ F(p),
$$

where in (*) we again used that $F \circ \theta^{(p)}$ is an integral curve of Y starting at $F(p)$ and thus it is equal to $\eta^{(F(p))}$ where its defined (this uses the uniqueness part in the theorem about solutions to a system of ODEs).

(b) Denote by η the flow of F_*X . Applying part (a) to both F and F^{-1} we infer that $F(M_t) \subseteq N_t$ and $F^{-1}(N_t) \subseteq M_t$, so that $F(M_t) = N_t$ for each $t \in \mathbb{R}$. Furthermore, the commutativity of the above diagram shows that $\eta_t = F \circ \theta_t \circ F^{-1}$ for all $t \in \mathbb{R}$.

Exercise 6: Let V be a smooth vector field on a smooth manifold M and let $\theta \colon \mathfrak{D} \to M$ be the flow generated by V . Prove the following assertions:

- (a) If $p \in M$ is a singular point of V, then $\mathfrak{D}^{(p)} = \mathbb{R}$ and $\theta^{(p)}$ is the constant curve $\theta^{(p)}(t) \equiv p.$
- (b) If $p \in M$ is a regular point of V, then $\theta^{(p)} \colon \mathfrak{D}^{(p)} \to M$ is a smooth immersion.

[Hint: Argue by contraposition and use the fundamental theorem on flows.]

Solution:

(a) If $V_p = 0$, then the constant curve $\gamma : \mathbb{R} \to M$, $t \mapsto p$ is clearly an integral curve of V, so it must be equal to $\theta^{(p)}$ by uniqueness and maximality.

(b) Assume that $\theta^{(p)}: \mathfrak{D}^{(p)} \to M$ is not a smooth immersion. Then $\theta^{(p)}(s) = 0$ for some $s \in \mathfrak{D}^{(p)}$. Set $q := \theta^{(p)}(s)$ and note that $V_q = 0$, since $\theta^{(p)}$ is an integral curve of V. Thus, q is a singular point of V, and by part (a) we infer that $\mathfrak{D}^{(q)} = \mathbb{R}$ and that $\theta^{(q)}$ is the constant curve $\theta^{(q)}(t) \equiv q$. It follows from *Theorem 7.26*(b) that $\mathfrak{D}^{(p)} = \mathbb{R}$ as well, and for all $t \in \mathbb{R}$ the group law gives

$$
\theta^{(p)}(t) = \theta_t(p) = \theta_{t-s}(\theta(s,p)) = \theta_{t-s}(q) = q.
$$

For $t = 0$ we obtain $q = \theta^{(p)}(0) = p$, and hence $\theta^{(p)}(t) \equiv p$ and $V_p = \theta^{(p)}(0) = 0$, which contradicts the assumption that p is a regular point of V . This finishes the proof of (b).

Remark. It can be shown that if V is a smooth vector field on a smooth manifold M and if $p \in M$ is a regular point of V, then there exist smooth coordinates (s^i) on some neighborhood of p in which V has the coordinate representation $\frac{\partial}{\partial s^1}$. Therefore, a flow in a neighborhood of a regular point behaves, up to diffeomorphism, just like translation along parallel coordinate lines in \mathbb{R}^n ; see *Example 7.23*(1).