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Differential Geometry II - Smooth Manifolds
Winter Term 2024 /2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 12 — Solutions

Exercise 1: Let V' be a smooth vector field on a smooth manifold M, let J C R be an
interval, and let v: J — M be an integral curve of V. Prove the following assertions:

(a) Rescaling lemma: For any a € R, the curve
F:J = M, t— ~(at)
is an integral curve of the vector field V := aV on M, where J := {t € R | at € J}.
(b) Translation lemma: For any b € R, the curve
J:J = M, t > ~(t+b)
is also an integral curve of V on M, where J = {t e R |t + b€ J}.

Solution:

(a) If t € J, then

7 (t) = ay'(at) = aVyar) = V5

(b) If t € J, then
') =t +b) = Vyan) = Va-

Exercise 2 (The Euler vector field): Consider the Euler vector field on R, i.e., the

vector field V' on R™ whose value at a point z = (z!,...,2") € R" is
0 0
V,=a'— " .
v Oy |, et Oy |,

(a) Check that V is a smooth vector field on R™.

(b) Let ¢ € R and let f: R" \ {0} — R be a smooth function which is positively homo-
geneous of degree ¢, i.e., f(Ax) = X°f(x) for all A > 0 and = € R™\ {0}. Prove that

Vf=cf.
[Hint: Differentiate the above relation with respect to both z* and \.]
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(c) Compute the integral curves of V.

Solution:

(a) Note that the component functions of V with respect to the standard coordinate
frame for R™ are linear, hence smooth. Therefore, V' is a smooth vector field on R"™ by
Proposition 7.2.

(b) Using the chain rule, we obtain

8f 0 .. 0 L\ of
Xom (@) = o (M f () = 5 (F(M)) = Az (M) (1)
and .
A7) = (7)) = 1 (10w) =3 L ) &)
Since .
\% = Vel = Z 81” )
we have
) of
(V) = Vau f = Z ACZ von@=XVHE)G)
but also .
VH0) = Vinf = 30020 () 2 exs(a) ()

It follows now from (3) and (4) that

(VF)(x) = cf () for every x € R™\ {(0,0)}.

(c) Since at p = (0,...,0) € R™ we have V, = (0,...,0), the unique maximal integral
curve of V starting at p is the constant curve 7o: R — R™, ¢t — (0,...,0).
Now, if v: J — R"™ is a smooth curve, written in standard coordinates as

7(t> - (Vl(t)’ <o 77n(t))a
then the condition +/(t) = V) for v to be an integral curve of V' translates to
FI(t) =~(t) for every 1 < j <m,

which yields ' ‘
Vi J=R =R, ¥/(t)=cje’, 1<j<n,

for some constants c¢; € R. Therefore, the unique maximal integral curve of V' starting at
p=(p',...,p") € R is the smooth curve

v: R —R" t— (plet, . ,p”et).
Observation: The Euler vector field V' is a complete vector field on R™.
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Remark. The statement from Ezxercise 2(b) is referred to as the Fuler’s homogeneous
function theorem in the literature. In fact, it can also be shown that the converse to
Euler’s homogeneous function theorem holds: if f € C*(R"\ {(0,0)}) satisfies V f = cf,
where V' 1is the Euler vector field on R™ and ¢ € R, then f is positively homogeneous of
degree c.

Exercise 3:

(a) Consider the open submanifold
M= {(z,y) eR* |z >0, y>0} CR?

the map
F:M—M, (z,y) — (:lry, g),
T

and the smooth vector fields

on M.
(i) Show that F'is a diffeomorphism, compute its Jacobian matrix DF(z,y) at an
arbitrary point (z,y) € M, and determine its inverse F'~1.
(ii) Compute the pushforwards F, X and F.Y of X and Y, respectively.
(iii) Compute the Lie brackets [X, Y] and [F. X, F.Y].
(iv) Find the maximal integral curve of Y starting at the point (1,1) € M and

describe its image geometrically.

(b) Compute the flow of each of the following smooth vector fields on R?:

ag 0
W U=yg*5,
0
—r L oy
(i) V xax+ y@y
0 0
(iii) W—x%—ya—y.

Solution:

(a)(i) Define the map

G:M— M, (z,y) — (x/a:/ , ,/xy) )
Note that G is smooth, as the functions

(x,y) e M — x/y € Ryy and (z,y) € M — xy € Ry



are smooth (they are rational polynomials with non-vanishing denominator), and the
function u € Ryg — /u € Ryq is smooth as well. Observe also that

(GoF)a (\/Tyﬁ) (2,)
(FoG)( ([f >:<m,y>

for all (z,y) € M, so F and G are mutually inverse. Hence, F' is a diffeomorphism with
inverse F~! = (. Furthermore, the Jacobian of F is given by

and

Y

DE(Y) = (—y/ﬂf2

") forall (z,y) e M
1a or all (x,y .

(a)(ii) The push-forward F,X of X is the unique vector field on M that is F-related to
X, ie.,
dF(x,y) (X(x,y)) = (F*X>F(x,y) for all (x,y) e M.

The matrix of dF, ) with respect to the bases provided by 9/0x and 0/0y is precisely
DF(x,y). Since X is given with respect to this basis by (x,y)? and since

(e 1) ()= (5)

we obtain that

0
(F X) T,y) — Ql‘y a..
F(zy) — ox Fley)
Replacing (z,y) by G(x,y) yields
0
(F*X)(z y) = 2r — s
0% |(2)

and thus F, X = 2z %.
Similarly, since Y is given by (y,0)” with respect to the standard basis and since

(e 17e) - (0) = ().

we obtain 5 2 5
Yy
’ O | pryy 2% Y|y
Replacing (z,y) by G(x,y) yields
0 0
(F*Y)(ac,y) TY - - yQ o )
0|y Yy

and thus F.Y = zy 2 — ¢ gy



Alternatively, working as in the solution of [Ezercise Sheet 11, Exercise 2(d)(ii)] and
using coordinates (u,v) in the codomain, we compute that

A/ uv 4
v
DF(G(u, = ,
(G(u,v) Jw o
“ U
as well as
0 0 0
Xeup) = \/E— + Vuv — and  Ygue) = Vuv o— ,
v Ox G(u,v) ay G(u,v) O G(u,v)
whence
0 0 0
F*X ww) — 2 - d F*Y wy) = _ — 2 J—
( o) “ ou (u0) an ( ) = uv ou (u0) ov (w0)

(a)(iii) By [Ezercise Sheet 11, Exercise 4(a)] we have

B dy ox dy ox 0
X Y] = ($8x a y@x) * (yay -0 8y) or *

N N J/
~ —~

=Y =Yy

00 y 00 oy 0

o\ o)« -0 5) |
> 5

= 0.
Now, as [F.X, F.Y] = F.[X,Y] by [Ezercise Sheet 11, Ezercise 6(b)], we conclude that
[F.X,F.Y] = 0.

One can also see this with a direct calculation, using part (b) and part (a) of [Ezercise
Sheet 11, Ezercise 4]; namely, we have

oey)  0(2a) Olay)  ,020)\ | 0
X EY] =] (2 _ RACOBELCORN s
[ ) (‘” or Y ar )T\ e Y e ) | as
~; ~;
(—y?) 00 O(=y®) o 90\ | 0
+ (290 o Y o +10- dy +y-8—y 8_y
=0 =0



(a)(iv) Ifv: J — R?is a smooth curve in M, written in coordinates as y(t) = (y*(£),72(t)),
then the condition +'(t) = Y, for v to be an integral curve of Y translates to the system

dy' dv?

whence 72 is a constant function and ~! is an affine function. Since we also require that
~(0) = (1,1), we infer that the unique maximal integral curve of Y starting at (1,1) € M
is the smooth curve

v:J =(=1,400) > M CR* t— (t+1,1)

whose image is the straight line segment {(z,1) € R? | x > 0}.

(b) To deal with all the cases we argue exactly as in the solution to Ezercise 2(c). Thus,
we only provide the details for the solution of (ii).

(b)(i) The unique maximal integral curve of U starting at p = (p', p?) € R? is the smooth
curve v: R — R?, t — (3t? + p*t + p', t +p?), which is a smooth immersion. Hence, the
flow of the complete vector field U is the map

1
Ou: R x R* 5 R? (¢, (2,9)) — (§t2+yt—|—w, t+y).

(b)(ii) Observe first that the unique maximal integral curve of V starting at p = (0,0) is
the constant curve 75: R — R? ¢t + (0,0); see Exercise 6(a). Now, if v: J — R?is a
smooth curve, written in standard coordinates as v(t) = (y*(£), 7(¢)), then the condition
7' (t) = V4 for v to be an integral curve of V' translates to

Tt =),
TE(t) = 29%(t).
Therefore, there are constants ¢q, co € R such that
i J=R =R, y(t) = ci€é,
7 J =R =R, ¥*(t) = cre”,

so the unique maximal integral curve of V starting at p = (p', p?) € R? is the smooth curve
v: R = R% ¢ — (p'e’, p?e?), which is in passing a smooth immersion for p € R?\{(0,0)};
see Fzercise 6(b).

In conclusion, V is a complete vector field on R? whose flow is the map

Ov: R x R* - R? (¢, (z,y)) — (ze', ye™).

(b)(iii) The unique maximal integral curve of W starting at p = (p', p?) € R? is the smooth
curve 7: R — R?, ¢ — (p'e’, p?e™"), which is a smooth immersion for p € R?\ {(0,0)}.
Hence, the flow of the complete vector field W is the map

O : R x R? = R?, (t, (m,y)) — (xet,ye_t).



Exercise 4: Let #: Rx M — M be a smooth global flow on a smooth manifold M. Show
that the infinitesimal generator V' of 6 is a smooth vector field on M, and that each curve
6 : R — M is an integral curve of V.

Solution: By definition of the infinitesimal generator, we have

d

P

O(t,p) for all p € M. (%)
t=0

First, to show that V is smooth, we apply Proposition 7.4: Given an open subset U
of M, a smooth real-valued function f on U, and a point p € U, we have

Vit =vir= (] o)
d 0
-Gl wenen -3 oo

Since the composite map f o# is smooth, its partial derivative with respect to t is smooth
as well. Thus, V f(p) depends smoothly on p, which implies that V' is smooth.
Next, fix p € M and s € R. We have to show that

d d

dt dt

e(t,p) - ‘/G’(s,p) (;

t=s

=

0(t,0(s,p)).

t=0

By definition of a flow, we have

0(t+ s,p) = 6(t,0(s,p)),

and by first differentiating the above relation with respect to ¢t and then evaluating at
t = 0 we obtain the required identity.

Exercise 5:

(a) Naturality of flows: Let F': M — N be a smooth map. Let X € X(M) andY € X(N).
Let 6 be the flow of X and n be the flow of Y. Show that if X and Y are F'-related,
then for each ¢t € R it holds that F(M;) C Ny and n; 0 F' = F 0 6, on M;:

M, —Z 5 N,

W

M, L5 N,

(b) Diffeomorphism invariance of flows: Let F': M — N be a diffeomorphism. Show that
if X € X(M) and if 0 is the flow of X, then the flow of F, X € X(N)isn, = FofoF !,
with domain N; = F(M;) for each t € R.

Solution:

(a) Denote by Dy resp. Dy the flow domain of  resp. . Fix t € R and let p € M,;. Then
t e Dg’(’) and 9P Dg?) — M is the unique maximal integral curve of X starting at p.
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By [Erercise Sheet 11, Ezercise 2(e)], F o §) is an integral curve of Y starting at F(p).
Hence, by maximality, we obtain that Dgf) C Dg,F(p ) and thus t € Dg(p ) which shows
that F(p) € N;. In conclusion, F(M;) C N;.

Finally, we have

Fob,(p) = F(0(t.p) £ n(t, F(p)) = m o F(p),

where in () we again used that F o ) is an integral curve of Y starting at F(p) and
thus it is equal to nF®) where its defined (this uses the uniqueness part in the theorem
about solutions to a system of ODEs).

(b) Denote by n the flow of F,X. Applying part (a) to both F' and F~! we infer that
F(M;) C N; and F~Y(N;) C My, so that F(M;) = N; for each t € R. Furthermore, the
commutativity of the above diagram shows that 7, = F o0, 0 F~! for all t € R.

Exercise 6: Let V' be a smooth vector field on a smooth manifold M and let 6: ® — M
be the flow generated by V. Prove the following assertions:

(a) If p € M is a singular point of V, then ®® = R and #® is the constant curve
0@ (t) = p.

(b) If p € M is a regular point of V, then #® : D® — M is a smooth immersion.

[Hint: Argue by contraposition and use the fundamental theorem on flows.|

Solution:

(a) If V,, = 0, then the constant curve v: R — M, t — p is clearly an integral curve of V,
so it must be equal to 8%) by uniqueness and maximality.

(b) Assume that #®): ®®) — M is not a smooth immersion. Then #®(s) = 0 for some
s € DP. Set ¢ := 0P (s) and note that Vg =0, since 6®) is an integral curve of V. Thus,
q is a singular point of V, and by part (a) we infer that D@ = R and that 6 is the
constant curve 09 (t) = q. It follows from Theorem 7.26(b) that D) = R as well, and
for all t € R the group law gives

0P (t) = 0,(p) = 61—, (0(s.p)) = bi—s(q) = q.

For t = 0 we obtain ¢ = §®(0) = p, and hence ) () = p and V, = §®’(0) = 0, which
contradicts the assumption that p is a regular point of V. This finishes the proof of (b).

Remark. 1t can be shown that if V' is a smooth vector field on a smooth manifold M
and if p € M is a regular point of V, then there exist smooth coordinates (s%) on some
neighborhood of p in which V' has the coordinate representation a%l' Therefore, a flow
in a neighborhood of a regular point behaves, up to diffeomorphism, just like translation
along parallel coordinate lines in R™; see Ezample 7.23(1).



