

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 12

Exercise 1:

Let V be a smooth vector field on a smooth manifold M, let $J \subseteq \mathbb{R}$ be an interval, and let $\gamma: J \to M$ be an integral curve of V. Prove the following assertions:

(a) Rescaling lemma: For any $a \in \mathbb{R}$, the curve

$$\widetilde{\gamma} \colon \widetilde{J} \to M, \ t \mapsto \gamma(at)$$

is an integral curve of the vector field $\widetilde{V} := aV$ on M, where $\widetilde{J} := \{t \in \mathbb{R} \mid at \in J\}$.

(b) Translation lemma: For any $b \in \mathbb{R}$, the curve

$$\widehat{\gamma} \colon \widehat{J} \to M, \ t \mapsto \gamma(t+b)$$

is also an integral curve of V on M, where $\widehat{J} := \{t \in \mathbb{R} \mid t+b \in J\}.$

Exercise 2 (*The Euler vector field*):

Consider the Euler vector field on \mathbb{R}^n , i.e., the vector field V on \mathbb{R}^n whose value at a point $x = (x^1, \ldots, x^n) \in \mathbb{R}^n$ is

$$V_x = x^1 \frac{\partial}{\partial x_1} \bigg|_x + \ldots + x^n \frac{\partial}{\partial x_n} \bigg|_x.$$

- (a) Check that V is a smooth vector field on \mathbb{R}^n .
- (b) Let $c \in \mathbb{R}$ and let $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be a smooth function which is *positively homogeneous of degree* c, i.e., $f(\lambda x) = \lambda^c f(x)$ for all $\lambda > 0$ and $x \in \mathbb{R}^n \setminus \{0\}$. Prove that Vf = cf.

[Hint: Differentiate the above relation with respect to both x^i and λ .]

(c) Compute the integral curves of V.

Exercise 3 (to be submitted by Thursday, 12.12.2024, 16:00):

(a) Consider the open submanifold

$$M \coloneqq \left\{ (x, y) \in \mathbb{R}^2 \mid x > 0, \ y > 0 \right\} \subseteq \mathbb{R}^2,$$

the map

$$F: M \to M, \ (x, y) \mapsto \left(xy, \frac{y}{x}\right),$$

and the smooth vector fields

$$X \coloneqq x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$
 and $Y \coloneqq y \frac{\partial}{\partial x}$

on M.

- (i) Show that F is a diffeomorphism, compute its Jacobian matrix DF(x, y) at an arbitrary point $(x, y) \in M$, and determine its inverse F^{-1} .
- (ii) Compute the pushforwards F_*X and F_*Y of X and Y, respectively.
- (iii) Compute the Lie brackets [X, Y] and $[F_*X, F_*Y]$.
- (iv) Find the maximal integral curve of Y starting at the point $(1,1) \in M$ and describe its image geometrically.
- (b) Compute the flow of each of the following smooth vector fields on \mathbb{R}^2 :

(i)
$$U = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$$
.
(ii) $V = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$.
(iii) $W = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$.

Exercise 4:

Let $\theta \colon \mathbb{R} \times M \to M$ be a smooth global flow on a smooth manifold M. Show that the infinitesimal generator V of θ is a smooth vector field on M, and that each curve $\theta^{(p)} \colon \mathbb{R} \to M$ is an integral curve of V.

Exercise 5:

(a) Naturality of flows: Let $F: M \to N$ be a smooth map. Let $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$. Let θ be the flow of X and η be the flow of Y. Show that if X and Y are F-related, then for each $t \in \mathbb{R}$ it holds that $F(M_t) \subseteq N_t$ and $\eta_t \circ F = F \circ \theta_t$ on M_t :

$$\begin{array}{ccc} M_t & \xrightarrow{F} & N_t \\ \theta_t & & & \downarrow \eta_t \\ M_{-t} & \xrightarrow{F} & N_{-t} \end{array}$$

(b) Diffeomorphism invariance of flows: Let $F: M \to N$ be a diffeomorphism. Show that if $X \in \mathfrak{X}(M)$ and if θ is the flow of X, then the flow of $F_*X \in \mathfrak{X}(N)$ is $\eta_t = F \circ \theta_t \circ F^{-1}$, with domain $N_t = F(M_t)$ for each $t \in \mathbb{R}$.

Definition. Let V be a (rough) vector field on a smooth manifold M. A point $p \in M$ is called a *singular point* of V if $V_p = 0 \in T_pM$; otherwise, it is called a *regular point* of V.

Exercise 6:

Let V be a smooth vector field on a smooth manifold M and let $\theta \colon \mathfrak{D} \to M$ be the flow generated by V. Prove the following assertions:

- (a) If $p \in M$ is a singular point of V, then $\mathfrak{D}^{(p)} = \mathbb{R}$ and $\theta^{(p)}$ is the constant curve $\theta^{(p)}(t) \equiv p$.
- (b) If $p \in M$ is a regular point of V, then $\theta^{(p)} \colon \mathfrak{D}^{(p)} \to M$ is a smooth immersion. [Hint: Argue by contraposition and use the fundamental theorem on flows.]