
CS-119(h) Midterm: Solutions for the Programming Questions

Question 9

x = 13

z = -8

y = z + 21

a = x == y

b = x == y - z

c = x > True > z

if a and b and c:

if x - y != False:

print("banana")

else:

print("ananas")

elif a or b or c:

if x - y:

print("penguin")

else:

print("unicorn")

else:

print("pizza")

ananas penguin banana unicorn pizza

Solution

The code initializes three variables: x = 13, z = -8 and y = z + 21 = 13.
The code then defines three boolean variables, a, b and c, and assignes them to the following values:

• a = True because x and y are both 13.

• b = False because y - z = 13 - (-8) = 21 and x = 13.

• c = True because the expression x > True > z is equivalent to (x > True) and (True > z). The numerical
value of True is one. So, (x > True) = (13 > 1), which is True. Similarly, the second expression becomes
(True > z) = (1 > -8), which is also True.

The next step is to use the values in the conditional statements.

• if a and b and c: This condition checks if a, b, and c are all True. Because b = False, we jump to the elif
statement.

• elif a or b or c: This condition checks if any of a, b or c is True (it is enough to have at least one variable
set to True, such that the condition is met). Because a = True, this condition holds and we jump to the next
line, if x - y.

• if x - y: If we substitute the correct values for x and y, we obtain if 0, which translates to if False. Hence,
this condition fails and we jump to the else condition, which outputs the string "unicorn".

1

Question 10

numbers = [3, 6, 9, 12, 15]

result = 0

for i, v in enumerate(numbers):

if i % 2 == 0:

result += v

elif i % 3 == 0:

result -= v

print(result)

15 3 9 -9 12

Solution

The code iterates over the list numbers and modifies the value of result based on the index i of each element v.
Here is how the result is modified after each iteration.

• Iteration 0: i = 0, v = 3

– Because i % 2 == 0, we add v to result.

– result = 0 + 3 = 3

• Iteration 1: i = 1, v = 6

– Neither i % 2 == 0 nor i % 3 == 0, so result remains unchanged.

– result = 3

• Iteration 2: i = 2, v = 9

– Because i % 2 == 0, we add v to result.

– result = 3 + 9 = 12

• Iteration 3: i = 3, v = 12

– Because i % 3 == 0, we subtract v from result.

– result = 12 - 12 = 0

• Iteration 4: i = 4, v = 15

– Because i % 2 == 0, we add v to result.

– result = 0 + 15 = 15

Hence, the program outputs the value 15.

2

Question 11

matrix = [[i+2 * j for j in range(4)] for i in range(4)]

print(matrix)

[[0, 2, 4, 6], [1, 3, 5, 7], [2, 4, 6, 8], [3, 5, 7, 9]]

[[0, 1, 2, 3], [2, 3, 4, 5], [4, 5, 6, 7], [6, 7, 8, 9]]

[[3, 5, 7, 9], [4, 6, 8, 10], [5, 7, 9, 11], [6, 8, 10, 12]]

[[0, 2, 4, 6], [0, 3, 6, 9], [0, 4, 8, 12], [0, 5, 10, 15]]

[[0, 0, 0, 0], [2, 3, 4, 5], [4, 6, 8, 10], [6, 9, 12, 15]]

Solution

The code generates a 4× 4 matrix using nested list comprehensions as follows:

• for i in range(4): This loop is the outer list comprehension, creating 4 rows.

• for j in range(4): For each value of i, this loop iterates over j = 0, 1, 2, 3, creating 4 columns for each
row. Each element in the row is computed using the expression i + 2j.

We compute the values for each i to determine the matrix values. So, each row is as follows:

• Iteration 0: i = 0

[0 + 2 · 0, 0 + 2 · 1, 0 + 2 · 2, 0 + 2 · 3] = [0, 2, 4, 6]

• Iteration 1: i = 1

[1 + 2 · 0, 1 + 2 · 1, 1 + 2 · 2, 1 + 2 · 3] = [1, 3, 5, 7]

• Iteration 2: i = 2

[2 + 2 · 0, 2 + 2 · 1, 2 + 2 · 2, 2 + 2 · 3] = [2, 4, 6, 8]

• Iteration 3: i = 3

[3 + 2 · 0, 3 + 2 · 1, 3 + 2 · 2, 3 + 2 · 3] = [3, 5, 7, 9]

Hence, the final output is [[0, 2, 4, 6], [1, 3, 5, 7], [2, 4, 6, 8], [3, 5, 7, 9]].

3

Question 12

matrix = [[1, 0, 3, 4], [5, 6, 0, 8], [9, 10, 11, 0], [0, 14, 15, 16]]

result = 0

i = 0

while i < len(matrix):

if i:

for j in range(len(matrix[i])):

if matrix[i][j] == 0:

result += matrix[j][i]

i += 1

i += 1

print(result)

29

34

Ce programme n’affice rien car la boucle while ne se termine jamais

14

20

Solution

The code computes a sum, stored in result, based on specific elements of matrix. For a better visualization, the
matrix looks like the following:

matrix =


1 0 3 4
5 6 0 8
9 10 11 0
0 14 15 16


Initially, we have result = 0 and i = 0. A while loop iterates over rows. The inner for loop only executes if

i is non-zero. For each element in row i, if matrix[i][j] == 0, the transposed element matrix[j][i] is added to
result. Be careful that i is incremented in two lines within the while loop.

The outcome of each iteration is explained below:

• Iteration 0: Because i = 0, the condition of the if statement fails and the code just increments i. We have
i = 1.

• Iteration 1: The code enters the if body. Because matrix[1][2] == 0, we update result = result +

matrix[2][1] = 0 + 10 = 10. After this iteration, we have i = 3.

• Iteration 2: Because matrix[3][0] == 0, we update result = result + matrix[0][3] = 10 + 4 = 14.
After this iteration, i = 5, and because i exceeds the length of the matrix, we do not continue further.

Hence, the program outputs the value result, which is 14.

4

Question 13

a = [i // 2 for i in range(1, 13, 3)]

b = [i * 2 for i in a]

a.extend(b)

result = sum(a)

for i, v in enumerate(b):

result += v + b[i]

print(result)

112 70 77.0 112.0 50

Solution

The code creates the list a using list comprehension. The range generates the values 1, 4, 7, 10.

a = [1 // 2, 4 // 2, 7 // 2, 10 // 2] = [0, 2, 3, 5]

The list b is generated by doubling each element in a.

b = [0 × 2, 2 × 2, 3 × 2, 5 × 2] = [0, 4, 6, 10]

The next step extends the list a with all the elements from b. Hence, a = [0, 2, 3, 5, 0, 4, 6, 10]. For
computing the initial vlaue of result, we add all elements of a. So, result = 0 + 2 + 3 + 5 + 4 + 5 + 10 = 30.
Then, the for loop iterates over b with enumerate, adding v + b[i] to result:

• Iteration 0: i = 0, v = 0

– We add v and b[0] to result.

– result = 30 + 0 + 0 = 30

• Iteration 1: i = 1, v = 4

– We add v and b[1] to result.

– result = 30 + 4 + 4 = 38

• Iteration 2: i = 2, v = 6

– We add v and b[2] to result.

– result = 38 + 6 + 6 = 50

• Iteration 3: i = 3, v = 10

– We add v and b[3] to result.

– result = 50 + 10 + 10 = 70

Hence, the program outputs the value result, which is 70.

5

Question 14

x = c if (c > b) else b

x = a if (a > b and a > c) else x

y = min(-a, -b)

result = min(y, -c)

result -= x

max(a, b, c) - min(-a, -b, -c)

min(-a, -b, -c) - min(-a, -b, -c)

max(a, b, c) + min(a, b, c)

min(a, b, c) - max(-a, -b, -c)

2*min(-a, -b, -c)

Solution

After the first line, x = max(c, b). In the second line, we change the value of x only if a is greater than both
b and c. Hence, the first two lines compute x = max(a, b, c). With the following two lines, we obtain result

= min(-a, -b, -c), because result = min(y, -c) = min(min(-a, -b), -c). The final line computes result =

min(-a, -b, -c) - max(a, b, c). Note that min(-a, -b, -c) = - max(a, b, c), because it selects the most
negative (i.e., the smallest) value among -a, -b, -c. So, we can rewrite result = min(-a, -b, -c) - max(a, b,

c) = min(-a, -b, -c) + min(-a, -b, -c) = 2*min(-a, -b, -c), which is the final answer.

6

Question 15

numbers = [0, 1, 2, 3, 4, 5, 6]

a = [x*x**2 for x in numbers]

b = [x and numbers[0] for x in numbers]

a.extend(b[-2:])

print(sum(a[1::3]), a[-1])

65 0 257 False 257 0 65 216 65 False

Solution

The list a is created using list comprehension. For each element x in numbers, we compute x · x2 = x3.

a = [03, 13, 23, 33, 43, 53, 63] = [0, 1, 8, 27, 64, 125, 216]

The list b is created using list comprehension. For each element x in numbers, we compute x and numbers[0].
Because numbers[0] = 0, which is interpreted as false, for any value of x, x and numbers[0] = 0. Note that the
elements of b are zero and not False because numbers[0] is an integer, not a boolean.

b = [0, 0, 0, 0, 0, 0, 0]

a.extend(b[-2:]) appends the last two elements of b to a:

a = [0, 1, 8, 27, 64, 125, 216, 0, 0]

a[1::3] starts from index 1 and selects every third element in a:

a[1::3] = [a[1], a[4], a[7]] = [1, 64, 0]

The sum of these elements is 65.
The expression a[-1] refers to the last element of a, which is 0.
In conclusion, the final output is 65 0.

7

Question 16

count = 0

for i in range(3):

for j in range(3):

if i == 1 and j == 0:

count += 1

break

if i == j:

continue

count += 1

print(count)

3 7 4 5 10

Solution

The outer for loop iterates over i in the range [0, 1, 2]. For each value of i, the inner for loop iterates over j in
the range [0, 1, 2]. In each iteration, the code does the following operations:

• Iteration 0: i = 0, j = 0

– Because i == j, we continue and incrementj.

– count = 0

• Iteration 1: i = 0, j = 1

– None of the conditions for the if statements hold. So, we only execute count += 1 and incrementj.

– count = 0 + 1 = 1

• Iteration 2: i = 0, j = 2

– None of the conditions for the if statements hold. So, we only execute count += 1. Moreover, because we
finish the inner for loop, we go to the next value of i from the outer for loop and start again the inner
for loop.

– count = 1 + 1 = 2

• Iteration 3: i = 1, j = 0

– Because i = 1 and j = 0, the condition for the first if statement holds. So, we increment count and then
break. So, we terminate the inner for loop and go to the next value of i from the outer for loop and start
again the inner for loop.

– count = 2 + 1 = 3

• Iteration 4: i = 2, j = 0

– None of the conditions for the if statements hold. So, we only execute count += 1 and incrementj.

– count = 3 + 1 = 4

• Iteration 5: i = 2, j = 1

– None of the conditions for the if statements hold. So, we only execute count += 1 and incrementj.

– count = 4 + 1 = 5

• Iteration 6: i = 2, j = 2

– Because i == j, we continue and finish both for loops. Moreover, we do not increment count.

– count = 5

So, the final value of count is 5.

8

