
Solution 11
Quantum Information Processing

Exercise 1 Useful identity for the realisation of CNOT

Remark: Here all matrices that must be exponentiated are diagonal. In this case it is
easier to do computaions in components.

• σz =

(
1 0
0 −1

)
is diagonal so

R1 = R2 =

(
exp

(
−iπ

4

)
0

0 exp
(
iπ
4

) )
= e−iπ

4

(
1 0
0 i

)
.

• The Hadamard gate is H = 1√
2

(
1 1
1 −1

)
.

• For the Hamiltonian we have

H = ℏJ
(

1 0
0 −1

)
⊗
(

1 0
0 −1

)
= ℏJ


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

• If we let evolve for a time t = π
4J

we find

U = exp

(
− it
ℏ
H
)

= exp

(
− iπ

4Jℏ
H
)

=


exp

(
−iπ

4

)
0 0 0

0 exp
(
iπ
4

)
0 0

0 0 exp
(
iπ
4

)
0

0 0 0 exp
(
−iπ

4

)
 ,

⇒ U = exp
{
(−iπ

4
)
}
.


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1


Remark: The product of matrices corresponds to the circuit:

H	

R1	

R2	 H	

U	
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The input state is on the left side |ψ⟩ and the output state on the right (I2×2⊗H)U(R1⊗
R2)(I2×2 ⊗H)|ψ⟩.

We compute the product:

R1 ⊗R2 = e−iπ
2

(
1 0
0 i

)
⊗
(

1 0
0 i

)

= e−iπ
2


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −1

 ,

and

U(R1 ⊗R2) = e−i 3π
4


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1




1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −1



= e−i 3π
4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Also

I2×2 ⊗H =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


and

1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 =
1√
2


1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 −1 1

 ,

and then

1√
2


1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 −1 1

 1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 =
1

2


0 2 0 0
2 0 0 0
0 0 −2 0
0 0 0 −2

 ,

finally we find
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(I2×2 ⊗H)U(R1 ⊗R2)(I2×2 ⊗H) = e−i 3π
4


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 .

This matrix is basically equivalent to a CNOT gate and is equal to

e−i 3π
4

(
σx 0
0 −1

)
= e−i 3π

4

{(
1 0
0 0

)
⊗ σx −

(
0 0
0 1

)
⊗ 1

}
= e−i 3π

4 {|0⟩⟨0| ⊗ σx − |1⟩⟨1| ⊗ 1}.
Cette operation flip un bit si le bit de controle est dans l’etat |o⟩ et change la phase du

bit si le bit de controle est dans l’état |1⟩.
Remark: To get the standard CNOT standard we must use rotations with other signs:

R1 = exp

(
+i
π

2

σ2
1

2

)
et R2 = exp

(
+i
π

2

σ2
2

2

)
.

and we get

(I2×2 ⊗H)U(R1 ⊗R2)(I2×2 ⊗H) = ei
3π
4 {|0⟩⟨0| ⊗ 1+ |1⟩⟨1| ⊗ σx}

= ei
3π
4


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

standard CNOT

Exercise 2 Refocusing
a) One could write matrices in component form and multiply them. More simply we can

apply the identity to computational basis states and check the equality (this means the
equality is valid for any vector by linearity).

For example we for |ψ0⟩ = |↑↑⟩, we find (using that R1 flips a spin; verify !)

|ψ1⟩ = e−i t
2

H
ℏ |↑↑⟩ = e−itJ |ψ0⟩ ,

|ψ2⟩ = (R1 ⊗ I) |ψ1⟩ = e−itJ |↓↑⟩ ,

|ψ3⟩ = e−i t
2

H
ℏ |ψ2⟩ = e−itJe−i t

2
H
ℏ |↓↑⟩ = e−itJeitJ |↓↑⟩ = |↓↑⟩ ,

|ψ4⟩ = (R1 ⊗ I) |ψ3⟩ = (R1 ⊗ I) |↓↑⟩ = |↑↑⟩ ,
which shows |ψ4⟩ = |ψ0⟩ = (I1 ⊗ I2) |ψ0⟩. For other basis states we proceed with similar
verifications |↑↓⟩ , |↓↑⟩ , |↓↓⟩.

b) J << 1. Thus τ = π
4J
>> π. The π-pulses of NMR are much faster than the evolution of

nuclear spins. Thus by injecting two π-pulses at instants τ
2

and τ we recover the initial
state and everything looks as if the spins had not evolved.
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