

Information, Calcul et Communication Compléments de cours

Leçon II.1 et II.2 – Examen final 2018 1.3

Des séquences de cinq niveaux d'alerte météo doivent être transmises codées (code sans-préfixe et sans perte) sous forme de séquences de pastilles (ronds) rouges ou vertes. La table ci-dessous représente trois propositions de codes possibles. Malheureusement, ce sujet est tiré en noir et blanc; la couleur verte ou rouge s'est donc perdue...

code I	code II	code III
niveau (:)	niveau 1: 00 / 2	niveau 1 :
niveau 2 9 ● ● <	niveau 2 : 9 3	niveau 2 :
niveau 3	niveau 3 :	niveau 3 : 🌠 💍
niveau 4:	niveau 4 :	niveau 4.
niveau 5 :	niveau 5 :	niveau 5 :

Quel(s) code(s) (d'origine avec les couleurs) êtes vous néanmoins sûr(e) de ne pas pouvoir utiliser pour la transmission désirée ?

Justifiez votre réponse.

Lecon II.4 – Examen final 2018 1.2

À partir d'un alphabet de 33 lettres, on compose un mot X de 128 lettres de long; chacune des lettres de l'alphabet étant présente au moins une fois dans le mot X. Le code de Huffman de ce mot a une longueur moyenne de 5.5 bits.

- 1. Est-ce possible? **Justifiez** votre réponse.
- 2. Si oui, donnez les meilleures bornes (haute et basse) que vous pouvez pour

2.1 Tentropie de ce mo

$$\leq H(X) \leq$$

$$\leq L_c(Shannon-Fano(X)) \leq$$

et si c'est **non**, donnez les *meilleures* bornes (haute et basse) que vous pouvez pour la longueur moyenne d'un code de Huffman de ce mot :

$$\leq L_c(\operatorname{Huffman}(X)) \leq$$

 $\begin{array}{c} \mathcal{L}_{H \cup P} \left(\times \right) < \mathcal{H}(\chi) + 1 \\ \text{(shown-fano} \end{array}$

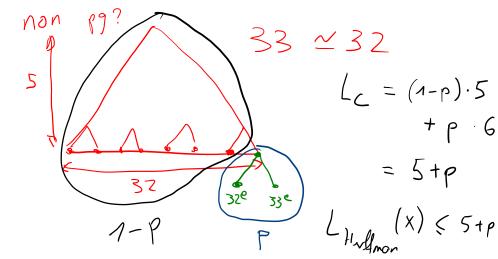
$$\begin{array}{c}
(A) \downarrow \uparrow \uparrow \uparrow \downarrow \\
(SLahman, fano)
\end{array}$$

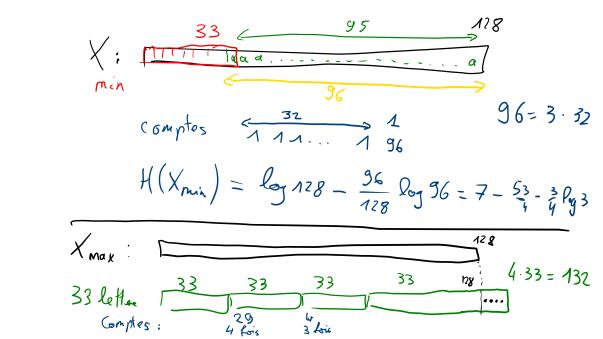
$$\begin{array}{c}
(A) \downarrow \uparrow \uparrow \downarrow \\
(A) \downarrow \downarrow \uparrow \downarrow \\
(A) \downarrow \downarrow \downarrow \downarrow \downarrow
\end{array}$$

$$\begin{array}{c}
(A) \downarrow \uparrow \uparrow \downarrow \\
(A) \downarrow \downarrow \downarrow \downarrow
\end{array}$$

$$\begin{array}{c}
(A) \downarrow \uparrow \uparrow \downarrow \\
(A) \downarrow \downarrow \downarrow
\end{array}$$

~s. 33~32





Leçon II.4 – Examen final 2018 1.2

À partir d'un alphabet de 33 lettres, on compose un mot X de 128 lettres de long; chacune des lettres de l'alphabet étant présente au moins une fois dans le mot X. Le code de Huffman de ce mot a une longueur moyenne de 5.5 bits.

- Est-ce possible ? Justifiez votre réponse.
 oui ça semble possible (réponse attendue)... ...mais en fait, c'est impossible
- Si oui, donnez les meilleures bornes (haute et basse) que vous pouvez pour
 l'entropie de ce mot :

$$L_c(\operatorname{Huffman}(X)) - 1 \le H(X) \le \log_2(33) \simeq 5.044$$

2.2 la longueur moyenne d'un code de Shannon-Fano de ce mot :

$$\leq L_c(\mathsf{Shannon}\mathsf{-Fano}(X)) \leq$$

et si c'est **non**, donnez les *meilleures* bornes (haute et basse) que vous pouvez pour la longueur moyenne d'un code de Huffman de ce mot :

$$H(X) \le L_c(\text{Huffman}(X)) \le 5.047 \text{ (voir plus loin)}$$

Leçon II.4 – Examen final 2018 1.2

À partir d'un alphabet de 33 lettres, on compose un mot X de 128 lettres de long; chacune des lettres de l'alphabet étant présente au moins une fois dans le mot X. Le code de Huffman de ce mot a une longueur moyenne de 5.5 bits.

- Est-ce possible ? Justifiez votre réponse.
 oui ça semble possible (réponse attendue)... ...mais en fait, c'est impossible
- Si oui, donnez les meilleures bornes (haute et basse) que vous pouvez pour
 l'entropie de ce mot :

$$L_c(\text{Huffman}(X)) - 1 \le H(X) \le \dots \text{ ou } : \frac{166}{32} - \frac{3}{32} \log_2(3) \simeq 5.039$$

2.2 la longueur moyenne d'un code de Shannon-Fano de ce mot :

$$5.5 \le L_c(\text{Shannon-Fano}(X)) \le H(X) + 1$$

et si c'est **non**, donnez les *meilleures* bornes (haute et basse) que vous pouvez pour la longueur moyenne d'un code de Huffman de ce mot :

$$H(X) \le L_c(\text{Huffman}(X)) \le 5.047 \text{ (voir plus loin)}$$

Leçon II.4 – Réponse

1. Est-ce possible? **Justifiez** votre réponse.

Réponse attendue : oui ça semble possible :

$$H(X) \leq \log_2(33) < L_c(\operatorname{Huffman}(X))$$

$$et: L_{\mathcal{C}}(\mathsf{Huffman}(X)) < \log_2(33) + 1 \qquad \text{(utiliser } \log_2(32) = 5, \ \log_2(33) = 5 + \log_2(33/32) \)$$

Ceci dit, le choix de 5.5 pour $L_c(\text{Huffman}(X))$ est un peu extrème et, en fait, trop grand. On pourrait par exemple le majorer par un code (pas forcément optimal); p.ex. 31 à 5 bits, et deux à 6 bits

lequel donne une longueur moyenne de 5+p (avec p la somme des probabilités des deux à 6 bits; donc p compris entre $\frac{2}{128}$ et $\frac{6}{128}$ [sinon on aurait un meilleur code en en mettant d'autres à 6 bits : $128-33n_{max}\geq 0$: $128/33\geq n_{max}$]),

donc une longueur moyenne de ce code entre 5.016 bits et 5.047 bits qui donne un majorant inférieur à 5.5 : donc c'est, en fait, impossible d'avoir 5.5 (puisque le code de Huffman est optimal)

Mais je n'attends pas un tel niveau de raisonnement en examen en temps limité.

Leçon II.4 – Réponse

Si on veut faire l'étude complète de ce cas (mais veut-on la faire en examen?), la situation varie entre

- ▶ 29 lettres apparaissent 4 fois et les 4 autres lettres apparaissent 3 fois; ce qui fait une entropie de $\frac{29}{32} \times 5 + \frac{3}{32} \log_2(\frac{128}{3}) \simeq 5.039$ bit. et une longueur moyenne du code de Huffman de $\frac{646}{128} \simeq 5.047$ bits (31 fois 5 et 2 fois 6, donc exemple précédent avec $p = \frac{6}{128}$) (pour info $\log_2(33) \simeq 5.044$)
- ▶ 32 lettres apparaissent 1 fois et la dernière lettre apparait 96 fois, ce qui fait une entropie de $\frac{1}{4} \times 7 + \frac{3}{4} \log_2(\frac{4}{3}) \simeq 2.061$ bit et une longueur moyenne du code de Huffman de $\frac{288}{128} \simeq 2.25$ bits

Leçon III.1 (architecture des ordinateurs) – Points clés

- architecture de von Neumann : processeur (CPU), mémoire, périphériques
- composants d'un CPU :

 registres, ALU, Décodeur, pointeur de pile, contrôleur

 réalisés à l'aide de transistors
- mémoire : 2 inverseurs « tête-bêche » (= 4 transistors)
- compilation :
 - assembleur : registres, instruction (dont comparaisons et sauts)
 - langage machine : encodage binaire de l'assembleur (y compris opérandes)
- performances / énergie : jouer sur :
 - le délai ;
 - et le débit (parallélisme).

Considérez le code assembleur suivant :

```
1: charge r2, 0
2: charge r3, 0

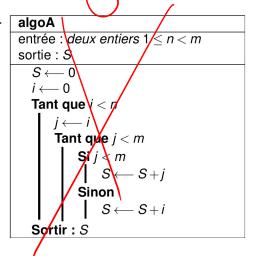
3: charge r4, r3
4: somme r3, r3, 1

5: somme r4, r4, 1
6: cont_ppe r1, r4, 9
7: somme r2, r2, r4
8: continue 5
9: somme r2, r2, r3
10: cont_pp r3, r0, 3
```

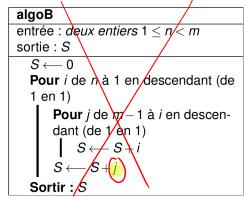
Entrép: n el m Sortie: 21 1, €0 13 €0

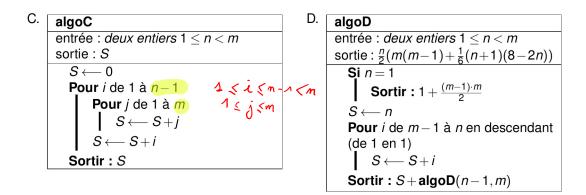
où l'instruction « cont_ppe a, b, N » effectue le test « $a \le b$ » (13 × 10); \Rightarrow sort et l'instruction « cont_pp a, b, N » effectue le test « a < b ». Lequel de ces algorithmes correspond au code ci-dessus (avec n charge dans r0 et m dans r1):

A



B.





Leçon III.1 (Architecture des ordinateurs) – Réponse

Dans l'algorithme A, il manque les incréments de *i* et *j* dans leur boucle respective (boucles infinies).

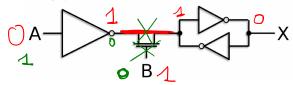
Dans l'algorithme B, les deux lignes « $S \leftarrow S + i$ » et « $S \leftarrow S + j$ » ont été inversées (aucun sens!).

Les bornes de l'algorithme C ne sont pas correctes : la boucle en i devrait aller jusque n et celle en j de i à m-1 (à voir en testant le cas simple n=1).

L'algorithme D est une écriture récursive de ce que calcule le programme :

$$S(n,m) = \sum_{i=1}^{n} \left(\left(\sum_{j=i}^{m-1} j \right) + i \right) = \sum_{i=1}^{n-1} \left(\left(\sum_{j=i}^{m-1} j \right) + i \right) + \sum_{j=n}^{m-1} j + n = n + \sum_{j=n}^{m-1} j + S(n-1,m)$$

On considère le système logique suivant :



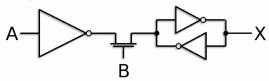
auquel on soumet les entrées A et B suivantes à quatre instants consécutifs :

1	t	Α	В	Χ	
١	1	0	1	<i>X</i> ₁	٥
	2	1	0	<i>X</i> ₂	0
	3	0	1	<i>X</i> 3	0
	4	1	1	<i>X</i> ₄	1
- 4					

A 3 4 E

Quelles sont les quatre sorties (x_1, x_2, x_3, x_4) correspondantes?

On considère le système logique suivant :



auquel on soumet les entrées A et B suivantes à quatre instants consécutifs :

t	Α	В	Χ
1	0	1	<i>X</i> ₁
2	1	0	<i>X</i> ₂
3	0	1	<i>X</i> ₃
4	1	1	<i>X</i> ₄

Quelles sont les quatre sorties (x_1, x_2, x_3, x_4) correspondantes? (0, 0, 0, 1)

Quelle est la table de vérité du programme ci-contre (sachant que r1 et r2 contiennent soit 0 soit 1)?

١]	ı
	١

r٦	r2	r3
0	0	0
1	0	0
0	1	0
1	1	10

... ...

B]

	r1	r2	r3
	0	0	0
3]	1	0	1
	0	1	1
	1	1	1

C1

r1	r2	r3
0	0	0
1	0	1
0	1	1
1	1	0

D] Aucune des trois.

1: cont_egal r1, 0, 5

2: cont_egal r2, 0, 5

3: charge r3, 0

4: continue 6

5: somme r3 r1 r2

6: // fin (stop)

