

Information, Calcul et Communication Compléments de cours

J.-C. Chappelier

Ffc=30 Te=1 Soit f une fonction de \mathbb{R} dans \mathbb{R} définie par

$$f(t) = \sum_{m \ge 0} \underbrace{a_m sinc(30 t - m)}_{30} + \underbrace{e^+ e^- - 4}_{30}$$
où $sinc(x) = \frac{sin(\pi x)}{\pi x}$ et $a_m = 7 sin(\frac{2\pi}{30} \frac{4\pi}{6}) + 3 sin(\frac{4\pi}{50} + \frac{\pi}{4}) + 2 sin(\frac{2\pi}{60} m)$. \rightarrow

où
$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$
 et $a_m = 7 \sin(\frac{2\pi}{3}m^4 + \frac{\pi}{6}) + 3 \sin(\frac{4\pi}{6}m + \frac{\pi}{4}) + 2 \sin(\frac{2\pi}{6}m)$. $\Rightarrow x = \frac{2\pi}{6}m$. $\Rightarrow x = \frac{2\pi}{6}m$. $\Rightarrow x = \frac{2\pi}{3}m = \frac{2\pi}{6}m$. $\Rightarrow x = \frac{2\pi}{3}m = \frac{2\pi}{6}m$. $\Rightarrow x = \frac{2\pi}{3}m = \frac{2\pi}{6}m$.

$$\sum_{\mathbf{r} \in \mathcal{R}} \chi(\mathbf{m}_{\mathbf{r}}) \leq \sum_{\mathbf{r} \in \mathcal{R}} \chi(\mathbf{m}_{\mathbf{r}})$$

$$\frac{2\Pi}{3}m = \left(\frac{2\pi}{3}\frac{1}{T_{e}}\right)mT_{e}$$

$$X(mTe)$$
 a $X(t)$ a $X(t)$

7 Sin (21) $\frac{1}{5}$ $t + \frac{11}{6}$) + 3 sin (4) $\frac{1}{5}$ $\frac{1}{5}$ 1, 1e + 2 Sin(21/ Fet) < 1e/2

Soit f une fonction de \mathbb{R} dans \mathbb{R} définie par

$$f(t) = \sum_{m \in \mathbb{Z}} a_m \operatorname{sinc}(30 \, t - m)$$

$$\text{où sinc}(x) = \frac{\sin(\pi \, x)}{\pi \, x} \text{ et } a_m = 7 \sin(\frac{2\pi}{3} m + \frac{\pi}{6}) + 3 \sin(\frac{4\pi}{5} m + \frac{\pi}{4}) + 2 \sin(\frac{2\pi}{6} m).$$

Écrire f(t) comme la somme de trois fonctions sinus :

Voyons a_m comme les échantillons d'un signal g(t) échantillonné à $f_e = 30$ Hz (le coefficient de t dans le sinc) : c.-à-d. que l'on veut écrire $a_m = g(mT_e) = g(\frac{m}{L})$, avec donc

$$g(t) = 7\sin(2\pi\frac{f_{\theta}}{3}t + \frac{\pi}{6}) + 3\sin(2\pi\frac{2f_{\theta}}{5}t + \frac{\pi}{4}) + 2\sin(2\pi\frac{f_{\theta}}{6}t)$$

 $\frac{f_e}{g}$ étant strictement supérieure à La bande passante de g (qui est $\frac{2f_e}{g}$), g sera reconstruite parfaitement par la formule de reconstruction, et on a donc pour tout t, f(t) = g(t), c.-à-d. :

$$f(t) = 7\sin(20\pi t + \frac{\pi}{6}) + 3\sin(24\pi t + \frac{\pi}{4}) + 2\sin(10\pi t)$$

Soit X le signal défini par :
$$X(t) = \sin(6\pi t + \frac{\pi}{4}) + 3\sin(30\pi t + \frac{\pi}{3}) + 2\sin(12\pi t).$$
APRES

X est filtré par un filtre passe-bas idéal de fréquence de coupure $f_c = 12 \text{ Hz}$ puis échantillonné à une fréquence $f_c = 14 \text{ Hz}$.

À partir de ces échantillons, on reconstruit le signal Y en utilisant la formule de reconstruction vue en cours.

Quelle est la forme mathématique du signal Y(t)?

Soit X le signal défini par :

$$X(t) = \sin(6\pi t + \frac{\pi}{4}) + 3\sin(30\pi t + \frac{\pi}{2}) + 2\sin(12\pi t).$$

X est filtré par un filtre passe-bas idéal de fréquence de coupure $f_c=12$ Hz, puis échantillonné à une fréquence $f_c=14$ Hz.

À partir de ces échantillons, on reconstruit le signal Y en utilisant la formule de reconstruction vue en cours.

Quelle est la forme mathématique du signal Y(t)?

$$Y(t) = \sin(6\pi t + \frac{\pi}{4}) + 2\sin(12\pi t)$$

Un enfant de vos connaissances veut enregistrer, et envoyer par message, un chant à sa

Fort(e) de vos connaissances en ICC, vous l'aidez à construire une transmission optimale. Sachant que sa voix se situe entre 1000 et 3500 Hz (au dessus il n'y a que du bruit) et que pour des raisons techniques, il n'est pas possible d'acquérir plus que 8000 échantillons par seconde, quelle procédure lui conseillez-vous :

► filtrage (passe-bas) voiibu non?

fc = 3501 Hz ... 3539 Hz

- ► Si oui :

 avant ou après échantillonnage ?
- ▶ avec quelle fréquence de coupure ?
- À quelle fréquence conseillez-vous d'échantillonner? Pourquoi?
- Le chant pourra-t-il être correctement reconstruit à l'arrivée ? Pourquoi ?

grand-mère.

Un enfant de vos connaissances veut enregistrer, et envoyer par message, un chant à sa grand-mère.

Fort(e) de vos connaissances en ICC, vous l'aidez à construire une transmission optimale. Sachant que sa voix se situe entre 1000 et 3500 Hz (au dessus il n'y a que du bruit) et que pour des raisons techniques, il n'est pas possible d'acquérir plus que 8000 échantillons par seconde, quelle procédure lui conseillez-vous :

- ► filtrage (passe-bas) : oui (nécessaire si l'on ne veut pas avoir de « repliement de
- spectre » du bruit)
- Si oui :
 avant ou après échantillonnage ? avant
 - avant ou après échantillorinage ? avant

 avec quelle fréquence de coupure ? un peu au dessus (mais assez proche) de 3500 Hz
- À quelle fréquence conseillez-vous d'échantillonner? Pourquoi? un peu au dessus de 2 fois la fréquence de coupure, ou, si possible à 8000 Hz
- Le chant pourra-t-il être correctement reconstruit à l'arrivée ? Pourquoi ? oui tant que les choix faits respectent fa > 2f.

Leçons II.1 et II.2 - Mix Examens 2015-2016

Soit X(t) un signal quelconque défini sur \mathbb{R} , de bande passante f_{\max} , et soit $X_i(t)$ sa reconstruction (suivant la formule du cours) après échantillonnage à une fréquence $f_n = 1/T_o$.

 $I_{\theta} = 1/I_{\theta}$. Les affirmations suivantes sont elles vraies ou fausses?

A]
$$\forall f_{\theta} \geq 3f_{\text{max}} \quad \forall t \in \mathbb{R} \quad X_{l}(t) = X(t)$$

B]
$$\forall f_{\theta} \ 0 < f_{\theta} \le 2f_{\max} \quad \forall t \in \mathbb{R} \quad X_{l}(t) = X(t)$$

C]
$$\forall f_e \ 0 < f_e \le 2f_{\text{max}}$$
 $\forall f \in \mathbb{R}$ $X_l(t) \ne X(t) \vdash A \lor X$
D] $\forall f_e \ 0 < f_e < 2f_{\text{max}}$ $\forall n \in \mathbb{Z}$ $X_l(nT_e) = X(nT_e)$

E] Si
$$f_e = 2f_{\text{max}}$$
, il est possible que $\forall t \in \mathbb{R}$ $X_i(t) = X(t)$

Leçons II.1 et II.2 - Mix Examens 2015-2016

Soit X(t) un signal quelconque défini sur \mathbb{R} , de bande passante f_{\max} , et soit $X_i(t)$ sa reconstruction (suivant la formule du cours) après échantillonnage à une fréquence $f_0 = 1/T_0$.

- Les affirmations suivantes sont elles vraies ou fausses?
- *A] $\forall f_e \geq 3f_{\max} \quad \forall t \in \mathbb{R} \quad X_l(t) = X(t)$
 - **B]** $\forall f_{\theta} 0 < f_{\theta} \le 2f_{\text{max}} \quad \forall t \in \mathbb{R} \quad X_{I}(t) = X(t)$
- C] $\forall f_{\theta} \ 0 < f_{\theta} \le 2f_{\text{max}} \quad \forall t \in \mathbb{R} \quad X_{l}(t) \neq X(t)$ *D] $\forall f_{\theta} \ 0 < f_{\theta} < 2f_{\text{max}} \quad \forall n \in \mathbb{Z} \quad X_{l}(nT_{\theta}) = X(nT_{\theta})$
- *E] Si $f_e = 2f_{\text{max}}$, il est possible que $\forall t \in \mathbb{R}$ $X_l(t) = X(t)$

Leçon II.3 (entropie) - Points clés

- ► compression sans perte / compression avec perte
- définition (formelle) de l'entropie
- (quatre) propriétés de l'entropie
- algorithme (de compression) de Shannon-Fano

Leçon II.3 (entropie) – Étude de cas

- ▶ inverse tous ses bits? ∩on
- ▶ lui additionne le nombre 1 ? ♥ i
- ▶ prend l'opposé? ○ ○
 ▶ fait une permutation circulaire de tous ses bits? ^>

Leçon II.3 (entropie) – Étude de cas

Soit un entier naturel codé sur 32 bits. L'entropie de ce nombre peut-elle être changée si on :

- inverse tous ses bits? non
- ► lui additionne le nombre 1 ? oui
- prend l'opposé ? oui
 fait une permutation circulaire de tous ses bits ? non

Leçon II.3 (entropie) – Étude de cas

2 lettra

Considérons la séquence X = « HUBERT QUEL HURLUBERLU » (sans les espaces). Les affirmations suivantes sont elles vraies ou fausses?

- A] H(X) € 2.82bit N 0 N
- B] $H(X) \geq 8$ bit \mathbb{W}

- $H(X) \leq \log \frac{\text{(nb. valeus)}}{8}$ $\Rightarrow H(X) \leq 3 \text{ bit}$

- C1 H(X) < 4 bit aui**D]** $H(X) = 3.1 \, \text{bit} \, \frac{1}{(1.15)^{10}}$

Considérons la séquence X = « HUBERT QUEL HURLUBERLU » (sans les espaces). Les affirmations suivantes sont elles vraies ou fausses ?

A1
$$H(X) = -2.82 \, \text{bit}$$

B]
$$H(X) \ge 8$$
 bit

D]
$$H(X) = 3.1 \, \text{bit}$$

$$DJ H(X) = 3.1 DI$$

Homework: calculez
$$H(X)$$
 7.94

Leçon II.3 (entropie) - Étude de cas

Soient H_V l'entropie des voyelles d'un jeu de Scrabble et H_C celle des consonnes ; $m = \min(H_V, H_C)$ et $M = \max(H_V, H_C)$.

L'entropie H_L de toutes les lettres de ce jeu de Scrabble vérifie :

Leçon II.3 (entropie) - Étude de cas

Soient H_V l'entropie des voyelles d'un jeu de Scrabble et H_C celle des consonnes : $m = \min(H_V, H_C)$ et $M = \max(H_V, H_C)$.

L'entropie H_L de toutes les lettres de ce jeu de Scrabble vérifie :

A1
$$m < H_i < M$$

B)
$$H_L = \frac{H_V + H_C}{2}$$

B]
$$H_L = \frac{H_V + H_C}{2}$$
 ***C]** $m \le H_L \le M + 1$

Démonstration?

 $H_{L} = -\left(\sum_{\ell \in V} \frac{N_{V}}{N} P_{r} \log \left(\frac{N_{V}}{N} P_{r}\right) + \sum_{\ell \in C} \frac{N_{C}}{N} \dots\right)$

$$\left(\frac{Nv}{N}\right) = \frac{Nv}{N} + \frac{Nv}$$



