
Information, Computation, Communication

Learning Python

Functions – Part I

1CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Agenda

• Why functions?
• Example: Intersection of two lists

• Function definition
• def, arguments, body, return

• Calling functions
• Example: multiply and add

• Function arguments, continued

• Type-dependent behavior

• Program flow with functions

• Local function variables
• Example: bubble sort

2CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock© kras99 / Adobe Stock

Why Functions?

3CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Why Functions?

• Group lines of code in a way that allows reuse without repetition
• Maximize code reuse

• Improve code readability

• Avoid copy-paste (code repetition)
• Minimize code redundancy

• Minimize the number of error sources

• Test code once, and then reuse it as frequently as needed to
perform computations on various data
• Good code maintainability

• In some programming languages, functions are referred to as
subroutines or procedures

4CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example: Intersection Of Two Lists

• Write a code that finds all elements shared between input

lists seq1 and seq2 and creates a new list containing only

those elements, sorted in increasing order

result = [] # Initialize an empty list to store the intersection.

for x in seq1: # Iterate over each item in the first sequence.

if x in seq2: # Check if the item is also in the second sequence.

if not x in result:

result.append(x) # If so, add it to the result list.

result.sort() # Sort the resulting list to ensure items are in order.

5CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

• Write a function that finds all elements shared between input

lists seq1 and seq2 and returns a new list containing only

those elements, sorted in increasing order

def seq_intersect(seq1, seq2):

result = [] # Initialize an empty list to store the intersection.

for x in seq1: # Iterate over each item in the first sequence.

if x in seq2: # Check if the item is also in the second sequence.

if not x in result:

result.append(x) # If so, add it to the result list.

result.sort() # Sort the resulting list to ensure items are in order.

return result # Return the sorted intersection list.

Example: Intersection Of Two Lists

6

Function Definition
Before it can be used, a function must be defined

7CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Function Definition

General format and syntax:

8CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def name(arg1, arg2, …, argN):
code
return result

Function Definition: def Statement

• def keyword creates a function (object) and assigns to it
a function name
• Choose a name that best describes what the function does

• PEP 8 Style Guide recommends:
• Function names should be lowercase, with words separated by

underscores as necessary to improve readability

9CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def name(arg1, arg2, …, argN):
code
return result

https://peps.python.org/pep-0008/#introduction

Function Definition: Parameters (Arguments)

• The function name is followed by parentheses, grouping zero or
more function parameters

• Parentheses are followed by a colon

• Parameters are variables (with names and values) acting as
inputs to the function
• Function code uses those variables to perform computation

• Parameters connect the function with the program that uses it

10CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def name(arg1, arg2, …, argN):
code
return result

Function Definition: Function Body

• …is simply the code inside the function

11CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def name(arg1, arg2, …, argN):
code # function body
return result

Function Definition: return Statement

• return keyword permits the function to answer with a value it
obtained for the given set of arguments

• We say that the function returns a value

• Return is not mandatory
• Function anyway terminates when it reaches the last line of its body

• If no return is specified, the function returns None
• The None keyword is used to define a null value or no value at all

12CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def name(arg1, arg2, …, argN):
code # function body
return result

Calling Functions
To make use of a function, we call it

13CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

E
X
A
M
P
L
E
S

Example: multiply_and_add_scalar function

• Consider the example function below, which multiplies two
variables and sums the result with the third variable

Start by function definition

def multiply_and_add_scalar(m, n, p):

return m * n + p

• The function receives three arguments: m, n, and p. Therefore
when called, this function expects three values. Then, it performs
the computation on them and returns the result.

14CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

A Complete Script, Including Function Calls

Start by function definition

def multiply_and_add_scalar(m, n, p):

return m * n + p

Having defined it, we can now use the function (call it)

m = 3, n = 4, p = 2

Let us save the function result in variable t

t = multiply_and_add_scalar(3, 4, 2) # t = 14

m = 5, n = 2, p = t (= 14)

t = multiply_and_add_scalar(5, 2, t) # t = 24

15CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Function Arguments, Continued…

• In the previous example

t = multiply_and_add_scalar(3, 4, 2)

arguments were assigned by their position
• 1st position, value 3, was assigned to the 1st argument: m

• 2nd position, value 4, was assigned to 2nd argument: n

• 3rd position, value 2, was assigned to the 3rd argument: p

16CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def multiply_and_add_scalar(m, n, p):
return m * n + p

Function Arguments, Continued…

• In Python, arguments can also be assigned explicitly

multiply_and_add_scalar(m=3, n=4, p=2)

• When explicitly assigned, the order becomes irrelevant

• Examples of calls equivalent to the one above
• multiply_and_add_scalar(p=2, n=4, m=3), or

• multiply_and_add_scalar(n=4, p=2, m=3), etc.

17CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def multiply_and_add_scalar(m, n, p):
return m * n + p

Function Arguments, Continued…

• Python allows setting default values to parameters

• Default values are used if no other value is specified

• Note: Parameters without default arguments cannot follow
parameters with default arguments, because the positional
assignment would fail to assign arguments correctly

18CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def name(arg1=default_value1, arg2=default_value2, …, argN=default_valueN):
code # function body
return result

E
X
A
M
P
L
E
S

Example: multiply_and_add_scalar function

Start by function definition

def multiply_and_add(m, n=0.5, p=2):

return m * n + p

m = 3, n = 0.5 (default), p = 2 (default)

t = multiply_and_add_scalar(3) # t = 3.5

m = 5, n = 2, p = 2 (default)

t = multiply_and_add_scalar(5, 2) # t = 12

Below call throws an error, as m has no value

t = multiply_and_add_scalar()

19CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Type-Dependent Behavior

• In Python, the meaning of every expression depends completely
upon the types of its objects

• This type-dependent behavior is called polymorphism

• Why does this matter?
• The output of your function may change depending on the type

of values (arguments) it was given

20CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

What is the output of this code?

21CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

def multiply_and_add(m, n, p):

return m * n + p

Note the nested function call

t = multiply_and_add("I", 1, multiply_and_add("C", 2, "-P"))

print(t)

Answer: ICC-P

first, multiply_and_add("C", 2, "-P") returns "CC-P"

then, multiply_and_add("I", 1, "CC-P") returns "ICC-P"

Program Flow
With functions

© Mirjana Stojilovic, EPFL, 2023
22© kras99 / Adobe Stock

Program Flow

23

code statement

code statement

code statement

code statement

code statement

code statement

Without functions

code statement

code statement

Program Flow

24

function call

With functions

code statement

initialize args

func body

func body

return result

code statement

code statement

Function receives arguments

Function returns the result

Local Function Variables

• Functions can have their variables

• A variable is local if it is created in the function body
• Function parameters are considered local variables

• Local variables are created when the function is called
and destroyed when the function terminates

• We say that "local variables live inside the function" or
their scope is "local to the function"

• Code that called the function cannot access (neither to read nor to
write to) function local variables
• Consequently, function local variables can have any name,

and they will not be mistaken for variables used outside of the function

25CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example: Bubble Sort

Write a function bubble_sort_descending() which takes a list of
numbers as argument and returns the list sorted in descending order

[Wiki] Bubble sort is a simple sorting algorithm that repeatedly steps
through the input list element by element, comparing the current
element with the one after it and swapping the values if needed.
The process repeats until the list is sorted.

26CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Bubble Sort Descending: Step by Step

• Initial Step
• Start with an unsorted list of elements

• The algorithm examines each pair of adjacent elements

• Comparison and Swap
• For each adjacent pair, if the first element is smaller than the second, swap them;

If not, leave them as is

• This way, the smallest unsorted element "bubbles" up to the end of the list with each pass

• Repeat Passes
• After one pass, the smallest element will be in its correct position at the end

• Repeat the process for the remaining unsorted part of the list, which keeps shrinking
as more elements are placed in their final positions

• Completion
• Continue repeating the passes until no swaps are left to do, at which point the list is sorted

27CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example: Bubble Sort
def bubble_sort_descending(arr):

n = len(arr) # local variable

for i in range(n): # repeat for every array element; local var. i

for j in range(0, n - i - 1): # traverse the unsorted part of the list

if arr[j] < arr[j + 1]: # compare and swap

temp = arr[j] # local variables temp and j

arr[j] = arr[j+1]

arr[j+1] = temp

return arr # return the sorted array

Example usage

seq = [5, 3, 8, 4, 2]

sorted_seq = bubble_sort_descending(seq)

print("Sorted array in decreasing order:", sorted_seq) # [8, 5, 4, 3, 2]

28CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Next topic:
Recursive Functions

29CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

