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Differential Geometry II - Smooth Manifolds
Winter Term 2024 /2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 11 — Solutions

Exercise 1: Show that there is a smooth vector field on S? which vanishes at exactly one
point.

[Hint: Use the stereographic projection [Ezercise Sheet 2, Exercise 5] and consider one of
the coordinate vector fields.]

Solution: We view (u,v), resp. (@, ), as the component functions of o, resp. o, where
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Note that & o 07! is given essentially by the same formula as 0 o ¢! (with the roles of
(u,v) and (u,v) reversed), and thus its Jacobian is essentially the same matrix as the one
in [Ezercise Sheet 10, Ezercise 1(d)] (where everything is now expressed in terms of (u,v)
instead of (w,0)); see [Erercise Sheet 2, Exercise 5).

We now consider the first coordinate vector field X := % associated with the chart
(S2\{N},0) for S%. It follows from Proposition 7.2 that X = 1.2 +0£ is a smooth vector
field on S? \ { N}, since its component functions with respect to the smooth coordinate
frame {8%, %} are constant, and it is obvious that X does not vanish on §? \ {N}. We
claim that X extends to a smooth vector field on the whole S? and that it vanishes

precisely at the north pole N € S Indeed, on §? \ {N, S} we have
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Since N = (0,0, 1) € S? corresponds under & to (u,?) = (0,0) € R?, we infer that X can
be extended to a vector field on S? by defining its value at N to be zero; namely,

Dl ifp#EN
X:S* 5 TS? pes P ifp# N,
0, ifp=N.

The above expression for X also shows that its component functions with respect to the

smooth coordinate frame {%, 2} associated with the chart (S*\ {S},5) are smooth,
and hence X is smooth (also) on S\ {S} by Proposition 7.2. Therefore, X is a smooth

vector field on S? which vanishes only at the north pole N of S?, as claimed.

Exercise 2:

(a) Let F': M — N be a smooth map. Let X € X(M) and Y € X(N). Show that X and
Y are F-related if and only if for every smooth real-valued function f defined on an
open subset of NV, we have

X(foF)=(Yf)oF.
(b) Consider the smooth map
F:R = R? t+ (cost,sint)

and the smooth vector fields

d 0 0
X =— R Y =0— —y— R?).
o € X(R) and xay Yoo € X(R%)

Show that X and Y are F-related.

(c) Let F: M — N be a diffeomorphism and let X € X(M). Prove that there exists
a unique smooth vector field Y on N that is F-related to X. The vector field Y is
denoted by F,X and is called the pushforward of X by F.

(d) Consider the open submanifolds
M:={(z,y) eR*|y>0 and z+y>0} CR?
and
N = {(u,v) €R*|u>0 and v >0} CR?

and the map
F: M — N, (z,y) — (m—i—y,z—l—l).
Y

(i) Show that F'is a diffeomorpism and compute its inverse F'~'.

(ii) Compute the pushforward F,X of the following smooth vector field X on M:
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(e) Naturality of integral curves: Let F': M — N be a smooth map. Show that X € X(M)
and Y € X(NV) are F-related if and only if F' takes integral curves of X to integral
curves of Y.

Solution:

(a) For any point p € M and any smooth real-valued function f defined on an open

neighborhood of F'(p) we have

X(f o F)(p) = Xp(f o F) = dF,(X,)(f)
and
(Yo F)p) = (Y )(F(Pp) =Yrpf.
Therefore, X and Y are F-related (i.e., dF,(X,) = Yp(,) for every p € M) if and only

if for every smooth real-valued function f defined on an open subset of N it holds that
X(foF)=(Yf)oF.

(b) 1st way: We prove the claim using the definition of F-related vector fields. To this
end, recall that the differential of F' at an arbitrary point ¢ € R is represented (with
respect to the bases {d/dt|,} for TR = R and {8/83:!F(t), 8/8y’F(t)} for TryR? = R?)
by the Jacobian of F' at ¢, which is the 2 x 1-matrix

(i)
Hence,

AF(X,) = (ZZIES)) (1) = (—Cslsf(lg)) _ _sin(t)a%

for any t € R, which shows that X and Y are F-related.

+ cos(t) — 0

= Yru
F(t) Oy

F(t)

2nd way: We may alternatively prove the assertion using (a) as follows: For every
smooth real-valued function f = f(z,y) defined on an open subset of R? and for any

t € R we have
d

X(fo F)(t) = Xi(fo F) =

_ (g—i(”t”’ g_;”(m))) (Fl0), F0)"

(foF)

and

(Yo F)(t) = (Y/)(F() = Yref

%) : 9
= (cos(t) 3y o — sin(t) oz, ) f
— con(t) 5L (F(0)) —sin(0) 2L (F(0),



It follows from part (a) that X and Y are F-related.

(c) Since F' is a diffeomorphism, we may define the following rough vector field on N:
Y:N—=TN, q— dFF—l(q) (XF—I(q)).

It is clear that this is the unique (rough) vector field on N that is F-related to X. We
now observe that Y is the composition of the following smooth maps (see also [Ezercise
Sheet 5, Ezercise 4(a)]):

N v X A T,
so it is smooth by [Ezercise Sheet 3, Exercise 3(e)].

Remark. Given a diffecomorphism F': M — N, the pushforward of any X € X(M) by F
is defined explicitly by the formula

(FLX)g = dFp-1g)(Xp1g)),

as already demonstrated in the proof of (c¢) above. As long as the inverse map F~! of F'
can be computed explicitly, the pushforward of a smooth vector field can be computed
directly from this formula. This observation will be applied in (d) below.

(d) It is straightforward to check that the inverse of F' is given by the formula

The differential of F' at an arbitrary point (x,y) € M is represented by the Jacobian of
F at (x,y), given by
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Therefore, we obtain
u? 0

F*X u,w) — o
( ) v2 Ou

(u,0)

(e) Assume first that X and Y are F-related. Let 7 be an integral curve of X. By
definition and by [Exercise Sheet 4, Exercise 5(b)] we obtain

(Foy)(t)=dFyu (Y (1) = dFyw (Xyw) = Yraw) = YEen o,
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which shows that F' o~ is an integral curve of Y.

Assume now that F' takes integral curves of X to integral curves of Y. Let p € M
and let v: (—e,e) — M be an integral curve of X starting at p. Then v(0) = p and
7'(0) = X,. Moreover, by assumption, F o v: (—e,&) — N is an integral curve of YV
starting at F'(p), s0 Y(roy)0) = (F 07)'(0). Therefore, by [Ezercise Sheet 4, Exercise 5(b)]
we obtain

Y = (F07)(0) = dF,(v'(0)) = dF,(X,).
Since p € M was arbitrary, we conclude that X and Y are F-related.

Exercise 3: Let M be a smooth manifold and let X and Y be two smooth vector fields
on M. Show that the Lie bracket [X,Y] of X and Y, defined by

(X,Y]: C®°(M) - C*(M), f—XY[f-YX/,
is also a smooth vector field on X.

Solution: The R-linearity of [X, Y] follows immediately from the R-linearity of both X
and Y. Let us now verify the product rule:

(X, Y](fg9) = XY (fg) =Y X(f9g)
=X(fYg+gY[f)-Y(fXg+9X[)
= (XfYg+ fXYg+XgYf+gXY[)—
(YfXg+ [YXg+YgX[f+gYX[)
= f(XYg—-YXg)+g(XY[-YX[)
= f[X,Y]g+g[X,Y]f.

In conclusion, [X, Y] is a smooth vector field on M by Proposition 7.5.

Exercise 4: Let M be a smooth n-manifold and let X, Y € X(M).

(a) Coordinate formula for the Lie bracket: Let

X - Xl_. d Y = Y] _—
; o " jzl OxJ

be the coordinate expressions for X and Y, respectively, in terms of some smooth
local coordinates (x') for M. Show that the Lie bracket [X,Y] has the following
coordinate expression:

Y7 0XTY 9
ZZ(X oxt ami)axf

=1 =1

(b) Compute the Lie brackets [+, 52| of the coordinate vector fields 0/9z' in any

smooth chart (U, (z*)) for M.




(c) Assume now that M = R3

0 0 0 0 0

and compute the Lie bracket [X Y.

Solution:
(a) Denote by U C M the coordinate domain. For any f € C*°(U) we have

X Y]() = XY () = YX(f) = X (Z yg—f) (Z X W)
X MWX(SQ)} S [z (5]

,0Y7 ;0 (O0f JOXPOf ;0 (Of
{X ozt 8:63 yix Oxt (8353')} %: [Y OxJ Ox' XY OxJ \ Ox*

LY of i | O (Of 9 (0f
(X o v o )axa Z(X YJ)\[W (%) O (a:a)l
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(b) Recall that the component functions of each coordinate vector field 9/9z7 in the
coordinate frame (9/0z") associated with the smooth chart (U, (z%)) are constant, so it

follows immediately from (a) that
J 0
{a—x aﬂ -0

X, Y]=((z-0-1-1)+(1-0-0-0)+ (z(y+1)-0—1-0)) —

(c) By part (a) we obtain
0
ox

+((z-0-1-0)+(z-0-0-0)+ (z(y+1)-0—y- o)a2

—l—((x-O—1~(y+1))+(1-1—0~x)+(x(y+1)-0—y-0))%
) o)

oz y&'

Exercise 5 (Properties of the Lie bracket): Let M be a smooth manifold. Show that the
Lie bracket satisfies the following identities for all X, Y, Z € X(M):

(a) Bilinearity: For all a,b € R we have

[aX +bY, Z] = a[X, Z] + b]Y, Z],
[Z,aX +bY] =alZ, X]|+0[Z,Y].
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(b) Antisymmetry:
[X,Y]=—[Y, X].

(c) Jacobi identity:
(X, [V, Z]] + [V,[2. X]] + [Z2,[X,Y]] = 0.

(d) For all f,g € C*(M) we have

[fX,g9Y] = fg[X, Y]+ (fX9)Y — (gY f)X.

Solution:

(a) We first make the following observation: given A, u € R and U, V,W € X(M), for any
f € C*°(M) it holds that

ANV + WY Uf=XVUf+puWUf and UNV +uW)f = XUV f+ pUW f.
Indeed, for any p € M we have

(AV + W)U ) (p) = AV + tW),(Uf) = (A\V, + pW,)(U f)
= AV, (Uf) + uW,(Uf) = A\V(U f)(p) + W (U f)(p)
= (A\VUf +uWUf)(p),

which yields the first equality above, while the second one is obtained analogously.
Now, given a,b € R, using the previous observation, for any f € C°°(M) we have

[aX +bY, Z)(f) = (aX +bY)Zf — Z(aX +bY) f
=aXZf+WWZf—aZXf—bZYf
=a(XZf-ZX[)+b(YZf—ZY )
= a[X, Z](f) + 0[Y, Z]([)
= (a[X, Z] +b[Y, Z))(f),

which yields the first part of the statement, while the second one is obtained similarly.

(b) For any f € C*°(M) we have
(X Y)(f)=XYf-YXf=—(YXf-XYf)=-[Y,X](f),

which yields the statement.

(c) By expanding all the brackets and using linearity we obtain

X, . 2] + [V (2] + [Z,[X.Y]] -
= X[Y,Z] - [V, ZIX +Y[Z,X] - |2, X]Y + Z[X,Y] - [X,Y]Z
= XYZ - XZY ~YZX+ZYX +YZX —~YXZ — ZXY + XZY +
Y IZXY —ZYX - XYZ+YXZ
—0.



(d) We first make the following observation: if V' € X(M) and s,t € C*°(M), then
(sV)h=s(Vh) (assmooth functions on M),

since for any p € M we have

((sV)h)(p) = (sV)ph = (s(p)Vy) b = s(p)Vpo = s(p) (V) (p) = (s (V1)) (p)-

Now, fix f,g € C>°(M). Using the previous observation and the fact that smooth
vector fields are derivations of C*°(M) by Proposition 7.5, for any h € C*°(M) we have

[fX, gY](h) = (fX)(gY)(h) — (¢Y)(fX)(h)
= (fX)(9(Yh)) — (gY) (f(XD))
=g(fX)(Yh)+ (Y h)(fX)(g) — f(gY)(Xh) —
:gf(X Yh))+ f(Xg)(Yh)— fg(Y(Xh)) —g
= fg((XY =Y X)(h)) + (fXg)Y (h) — (gY f)X ()
= (f9[X, Y]+ (fXg)Y — (9Y [)X)(h),

whence the desired relation.

Remark. A Lie algebra (over R) is an R-vector space g endowed with a map g x g —
g, called the Lie bracket and usually denoted by (X,Y) +— [X,Y], which satisfies the
following properties for all X,Y, Z € g:

(a) Bilinearity: For all a,b € R we have

[aX +bY, Z] = a[X, Z] + b]Y, Z],
[Z,aX +bY] = aZ, X] + b|Z,Y].

(b) Antisymmetry:
[Xa Y] = _[Ya X]

(c) Jacobi identity:
(X, [V, Z]] + [V,[2. X]] + [2,[X,Y]] = 0.

According to Ezercise 4, the infinite-dimensional R-vector space X(M) of all smooth
vector fields on a smooth manifold M is a Lie algebra under the Lie bracket. Here are
two more examples of Lie algebras:

(1) The R-vector space M,(R) of real n x n matrices equipped with the commutator
bracket [A, B] := AB — BA becomes an n?-dimensional Lie algebra, which is denoted
by gl(n,R).

(2) If V is an R-vector space, then the R-vector space of all linear maps from V' to itself
equipped with the commutator bracket [Ly, Lo] == Ly o Ly — Ly o Ly becomes a Lie
algebra, which is denoted by gl(V').

Under our usual identification of n x n matrices with linear maps from R" to itself,
gl(R™) is the same as gl(n,R).



Exercise 6: Let F': M — N be a smooth map.

(a) Naturality of the Lie bracket: Let X1, Xs € X(M) and Y;,Y, € X(N) be smooth
vector fields such that X; is F-related to Y; for ¢ € {1,2}. Show that [Xi, X5] is
F-related to [Y7, Ya).

(b) Pushforwards of Lie brackets: Assume that F' is a diffeomorphism and consider
X17X2 S %(M) Show that F*[Xl,XQ] = [F*Xl, F*XQ]
Solution:
(a) Since X; is F-related to Y; for i € {1,2}, by Ezercise 2(a) we infer that for every
smooth real-valued function f defined on an open subset of N we have
Xi(foF)=Y1f)oF and Xy(foF)=(Ysyf)oF.

Therefore,

(X1, Xo](foF)=X1Xo(foF)— Xo X (foF)
= Xl((YQf) oF) — Xz((Ylf) oF)
= M(Yaf)) o F = (Ya(Yaf)) o F
= (V1. Y2](f)) o F,

and thus Ezercise 1(a) implies that [X;, X3| is F-related to [Y7,Y3] .

(b) Follows immediately from part (a) and from FEzercise 2(c).

Exercise 7:

(a) Restricting smooth vector fields to submanifolds: Let M be a smooth manifold, let S
be an immersed submanifold of M, and let ¢: S < M be the inclusion map. Prove
the following assertions:

(i) If Y € X(M) and if there is X € X(S) that is c-related to Y, then Y € X(M) is
tangent to S.

(i) If Y € X(M) is tangent to S, then there is a unique smooth vector field on S,
denoted by Y'|s, which is ¢-related to Y.

[Hint: Determine first the candidate vector field on S and then use Theorem 5.6
and Proposition 5.17 to show that it is smooth.]

(b) Lie brackets of smooth vector fields tangent to submanifolds: Let M be a smooth
manifold and let S be an immersed submanifold of M. If Y] and Y5 are smooth vector
fields on M that are tangent to S, then show that their Lie bracket [Y7,Y5] is also
tangent to S.

Solution:

(a)(i) Since X is t-related to Y, it holds that Y, = di,(X,) for all p € S, which means
that Y, € 7,5 for all p € S, i.e., Y is tangent to S.
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(a)(ii) Since by hypothesis we have Y, € T,,S = dui,,(7,S) for all p € S, we may define a
rough vector field X : S — T'S by requiring that, for any p € 9, its value X, € T,,S is
the unique vector such that di,(X,) = Y,. By the injectivity of di,, it is clear that X is
unique, and that it is t-related to Y, so it remains to show that X is smooth. To this
end, let p € S be arbitrary. By Proposition 5.17 there is an open neighborhood V' of p in
S such that V' is embedded in M. By Theorem 5.6 there exists a smooth chart (U, (a:’))
for M such that V N U is a k-slice in U — we may assume that V N U is the k-slice given
by #ftl = ... = 2" =0 — and (z%,...,2%) are local coordinates for S in V N U. Consider
the coordinate representation

Y:Z;Y’axi

of Y on U. Since Y is tangent to S, by Proposition 7.8 (evaluating the above expression
at the coordinate function z¢ with i > k) we infer that Y**' = ... =Y" =0on V NU.
Therefore,

X=> Y 0

7
1<i<k 0

unv

is the coordinate representation of X on V N U, and each component Y|y is smooth
by [Exercise Sheet 8, Ezxercise 5(a)], so X is smooth on U NV, and we are done.

(b) Since Y3,Y, € X(M) are tangent to S, by part (a)(ii) there exist (unique) smooth
vector fields Wy, W, on S such that W; is t-related to Y; for each j € {1,2}, where

t: S < M is the inclusion map. But now FEzercise 6(a) implies that [W;, W5 € X(S) is
t-related to [Y71,Ys] € X(M), and thus [Y7, Ys] is tangent to S by part (a)(i).
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