Def (prolongement par continuité): Soit $f: D \rightarrow \mathbb{R}$, $x_0 \in J$ a, $b \in J$ Si $\lim_{x \to x_0} f(x) = l \in \mathbb{R}$ aloss $g: |\int a, b[\rightarrow \mathbb{R}$ $| x \mapsto \begin{cases} f(x) & \text{si } x \neq x_0 \\ & \text{si } x = x_0 \end{cases}$ est appelé <u>le prolongement par continuité</u> de j'en xo, et g est continue en xo.

Définition équivalente de la continuité avec & et 8"

Thm: Sait $f: D(f) \to \mathbb{R}$ et $x_0 \in D(f)$ tel que $\exists n > 0$ tel que $\exists x_0 - n$, $x_0 + r \in CD(f)$.

On a que f est continue en x_0 ssi:

 $\forall \varepsilon > 0, \exists s > 0 \text{ tel que } \forall x \in D(f), (|x-x_0| \ll s \Rightarrow |f(x)-f(x_0)| \ll s$

Rmg: il s'agit de la définition de la limite "avec ε et δ " où la limite l'est remplacée par $f(x_{\delta})$ (on donc peut enlever l'inégalité $0<|x-x_{\delta}|$)

Thm (composition de faction). Scient $f: D(f) \rightarrow \mathbb{R}$ et $g: D(g) \rightarrow \mathbb{R}$ telles que $\operatorname{Im}(\S) \subset \mathsf{D}(\S)$. On a gof: $\mathsf{D}(\S) \to \mathbb{R}$. Sait $\mathsf{x}_{\mathfrak{o}} \in \mathsf{D}(\S)$. Si:

- · g est continue en xo, et · g est continue en f(xo)

Alors go f est continue en xo.

Contre-exemple (ne satisfaisant par les hypothèses).

 $g(x) = \int_{-\infty}^{\infty} x \cdot \sin\left(\frac{1}{x}\right) \sin x \neq 0$ or $f(x) = \int_{-\infty}^{\infty} 1 \sin x \neq 0$ or $f(x) = \int_{-\infty}^{\infty} 0 \sin x \neq 0$ or $f(x) = \int_{-\infty}^{\infty} 0 \sin x \neq 0$ prolongement par continuité 0 si x = 0

avec O(q) = O(1) = |R|. Comportement de $f \circ g$ en $x_0 = 0$?

- On $\alpha x \leqslant g(x) \leqslant x$, $\forall x \in \mathbb{R}$ done par le Thm. des gendarmes
- on a $\lim_{x\to 0} g(x) = 0 = g(0)$ donc g est continue en 0.

. On a lim
$$f(g) = 1 \pm f(g(0)) = f(0) = 0$$

 $y \rightarrow g(0) = 0$ $y \rightarrow g(0) = 0$
Denc f n'est pas combinue en $0 - g(0)$ denc le Thm. ne s'applique par.

· Pan ailleur, a a :

$$\begin{array}{l} x_n = \frac{1}{2\pi n} \; , \; \forall n \in \mathbb{N}^{\times} \; , \; \lim_{n \to \infty} x_n = 0 \; \text{ et } \lim_{n \to \infty} \int (g(x_n)) = \lim_{n \to \infty} \int (0) = 0 \\ \hat{x}_n = \frac{1}{2\pi n + \mathbb{T}_2} \; , \; \forall n \in \mathbb{N}^{\times} \; , \; \lim_{n \to \infty} \widehat{x}_n = 0 \; \text{ et } \lim_{n \to \infty} \int (g(x_n)) = \lim_{n \to \infty} \int (\frac{1}{2\pi n + \mathbb{T}_2}) = 1 \\ \text{Donc } \int o \; g \; \text{ n' admet } por \; \text{ de } \lim_{n \to \infty} e \; n = 0 \; , \; \text{ en } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; \text{ n' est } \; p \; \text{ articulier } \int o \; g \; n' \; \text{ est } \; p \; \text{ articulier } \int o \; g \; n' \; \text{ est } \; p \; \text{ articulier } \int o \; g \; n' \; \text{ est } \; p \; \text{ articulier } \int o \; g \; n' \; \text{ est } \; p \; \text{ articulier } \int o \; g \; n' \; \text{ est } \; p \; \text{ est } \; p \; \text{ articulier } \; g \; n' \; \text{ est } \; p \;$$

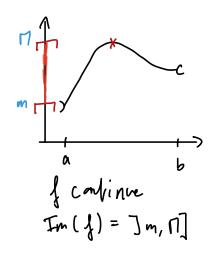
5.7 Propriétés globales des fondrions continues

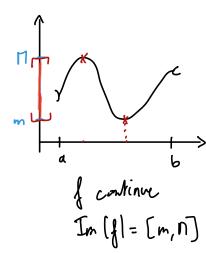
5.7 1º cas: fonctions continues sur un intervalle onvert

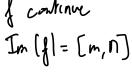
Def: Sair f:] a, b[→ R avec { a ∈ Ruf- ∞ f b ∈ Ruf+ ∞ f On dit que f sur Ja, b[si f est continue en tout point xo E]a, b[

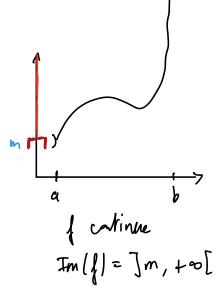
Thm: Soit g: Ja, b[-> R continue sur Ja, b[. Alon Im(g) est un intervalle (peut être onvert, fermé on semi-ouvert).

(se déduit du Thm. des valeus internédiaires plus bas)









Quand of n'est per continue vous les comportements sont possibles:

Intervalle

discontinue

I discontinue

5.7.2 2 en cas: fondions entinues sur un intervalle fermé et borné

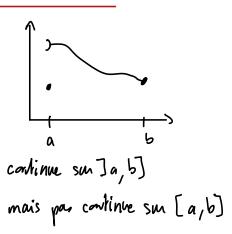
Def: Scient a, b $\in \mathbb{R}$, a < b, $f: [a, b] \rightarrow \mathbb{R}$. On dit que:

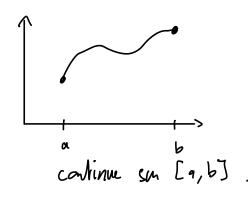
• f est continue à droite en $x_0 \in [a, b[si lim <math>f(x) = f(x_0)$.

• f est continue à gauche en $x_0 \in [a, b]$ si $\lim_{x \to x_0} f(x) = f(x_0)$.

Def: On dit que j'est continue sur [a, b] ssi:

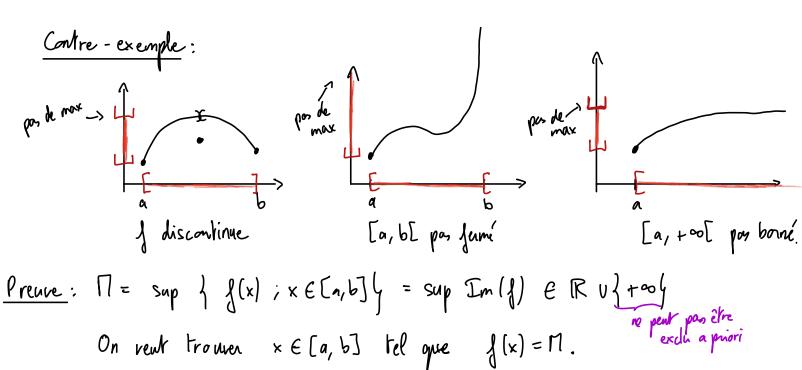
- · g est continue sur Ja, b[.
- · J'est continue à droite en a.
- · f est continue à gauche en b.





Thm 1. Soit $j: [a,b] \to \mathbb{R}$ arec $a,b \in \mathbb{R}$ continue sur [a,b]. Along admet un minimum et un maximum, c'ext-à-dire que $\exists c, C \in [a,b]$ tels que $f(c) \leqslant f(x) \leqslant f(c)$, $\forall x \in [a,b]$.

Notation: on note $\begin{cases} \min f = \min f(x) = \min In(f) \\ \max f = \max f(x) = \max Im(f) \end{cases}$



On real trouver $x \in [a, b]$ tel que f(x) = M.

- · Il existe une suite (xn) telle que Yn EN, xn E [a,b] et lim f(xn) = M (x) (propriétés du sup, détails ci-derrous).
- Par Bolzano-Weierstrass (x_n) admet une son-suite (\tilde{X}_n) qui converge donc $\exists c \in [a,b]$ tel que $\lim_{n \to \infty} \tilde{X}_n = c$.
- " On a $\lim_{n\to\infty} \int (\widetilde{x}_n) = \int \int (\operatorname{car}(\int_{n\in\mathbb{N}}(\widetilde{x}_n))_{n\in\mathbb{N}}) dx$ and $\int \int (\operatorname{car}(\int_{n\in\mathbb{N}}(\widetilde{x}_n))_{n\in\mathbb{N}}) dx$.
- · Danc I c E [a, b] tel que f(c) = T < +00, danc T est un maximum.

La démontration est analogue pour le minimum.

Détails pour (*) : M = sup A avec A C IR, A ≠ Ø $\forall \varepsilon > 0$, $\exists a \in A$ t.g $\Pi - \varepsilon < a \ll \Pi \implies |a - \Pi| \ll \varepsilon$ Pan $n \in \mathbb{N}^*$ on prend $\varepsilon = \frac{1}{n}$, or a $\exists a_n \in A$ tel que $|a_n - \Pi| \ll \frac{1}{n}$

 \rightarrow Dans le contexte de la pieuve ci-dessus: Pour n $\in \mathbb{N}^*$, on piend $\varepsilon = \frac{1}{n}$ et alors $\exists x_n \in [a, b] t. q | f(x_n) - \Pi | \leqslant n$. Donc le suite $(f(x_n))_{n \in \mathbb{N}}$ converge ver Π .

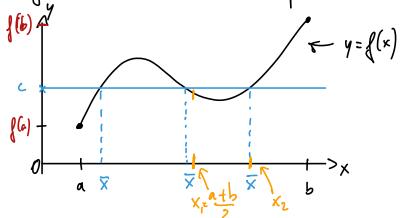
(adapter le nonsonmement si $\Pi = +\infty$)

Thm 2: Thm. des valeurs intermédiaires (TVI). Soit $f: [a,b] \to \mathbb{R}$ (a,b \in \mathbb{R}, a < b) une fonction continue. Alors f prend toutes les valeurs entre f(a) et f(b) c'est-à-dires

- · si f(a) « f(b) alon [f(a), f(b)] < In(f)
- · si $f(b) \leqslant f(a)$ alon $[f(b), f(a)] \subset Im(f)$.

Prenve: Supposons $f(a) \ll f(b)$ (l'autre cas se traite de Jaçon analogne). Soit $c \in [f(a), f(b)]$. Montrons que $\exists \ \overline{x} \in [a, b]$ tel que $f(\overline{x}) = c$.

- Si c = f(a), on pose $\bar{x} = a$ (et on a l'enminé, Si c = f(b), on pose $\bar{x} = b$) et on a l'enminé,
- · Sinon $c \in J_{a}(a), J_{a}(b)[$ et on construit x par dichotonie/bissection:



Sair $x_1 = \frac{a+b}{2}$ Si $\int \{(x_1) = c \text{ on pose } \overline{x} = x_1 \rightarrow \text{ terminé.}$ $\int \{(x_1) > c \text{ on pose } a_1 = a \text{ et } b_1 = x_1$ $\int \{(x_1) < c \text{ on pose } a_1 = x_1 \text{ et } b_1 = b$

Soit $x_n = \frac{a_{n-1}+b_{n-1}}{2}$ (milieu de [a_{n-1}, b_{n-1})

Si $\begin{cases} f(x_n) = c & \text{on pose} \quad \overline{X} = X_n \rightarrow \text{termine'} \\ f(x_n) > c & \text{on pose} \quad \alpha_n = \alpha_{n-1} \text{ et } b_n = X_n \\ f(x_n) < c & \text{on pose} \quad \alpha_n = X_n \text{ et } b_n = b_{n-1} \end{cases}$

• Si $\exists n \in \mathbb{N}^*$, tel que $\int (x_n) = c$ dans ce cas, $X = x_n$ et an aterminé. • Si non on a définit 2 suites $\int (a_n)_{n\geq 1}$ croissonte, majorée par a. $(b_n)_{n\geq 1}$ décroissonte, minorée par a.

a De plus $b_n - a_n = \frac{b-a}{2^n}$ (par récumence) donc $\lim_{n\to\infty} (b_n - a_n) = 0$

→ A' suivre ...