Leçons II.1 et II.2 (th. d'échantillonnage) – Points clés

formule de reconstruction :

$$X_I(t) = \sum_{m \in \mathbb{Z}} X(mT_e) \operatorname{sinc}\left(\frac{t - mT_e}{T_e}\right) = \sum_{m \in \mathbb{Z}} X(mT_e) \operatorname{sinc}(f_e t - m)$$

- ▶ théorème d'échantillonnage (dit « de Nyquist-Shannon »)
- effet stroboscopique / « repliement de spectre » $(\tilde{f} = f_e f)$
- filtrer avant d'échantillonner

Que donne le filtrage du signal

$$X(t) = 8\sin(4\pi t) - 6\cos(8\pi t) + 7\cos(2\pi t)$$

par un filtre passe-bas idéal de fréquence de coupure $f_c = 3$ Hz?

Un signal de bande passante 6000 Hz, mais ne contenant pas d'information pertinente au dessus de 3500 Hz est échantillonné à 8000 Hz après filtrage par un filtre passe-bas idéal de fréquence de coupure f_c .

Pour que toute l'information pertinente reste dans le signal échantillonné :

- A] f_c doit être légèrement inférieure à 4000 Hz.
- **B**] f_c doit être légèrement supérieure à 4000 Hz.
- C] C'est de toutes façons impossible.
- D] f_c doit être légèrement supérieure à 16000 Hz.

Le signal

$$X(t) = \sum_{i=1}^{100} \sin(4i\pi t + \frac{\pi}{12})$$

est échantillonné à une fréquence $f_e = 22 \text{ Hz}$.

Avant d'être échantillonné, on lui applique un filtre passe-bas idéal de telle sorte que l'on soit sûr d'éviter tout phénomène de « repliement de spectre » (ou « effet stroboscopique »).

Quel signal X_l obtient-on après reconstruction à partir du signal échantillonné?

Soit X le signal défini par :

$$X(t) = \sum_{m \in \mathbb{Z}} Y(m T_e) \operatorname{sinc}\left(\frac{t - m T_e}{T_e}\right)$$

avec:

$$Y(t) = 3\sin(4\pi t + \frac{\pi}{6}) + 2\sin(10\pi t + \frac{\pi}{4}) + \sin(14\pi t)$$

et $T_e = 1/15$.

Quelle est une autre écriture correcte de X (pour tout t)?

- **A]** 0
- **B]** $Y(0) \operatorname{sinc}\left(\frac{t}{T_e}\right)$
- C] $3\sin(4\pi t + \frac{\pi}{6})$
- **D]** $3\sin(4\pi t + \frac{\pi}{6}) + 2\sin(10\pi t + \frac{\pi}{4}) + \sin(14\pi t)$

Pour un signal X(t) échantillonné à une fréquence f_e , puis reconstruit en un signal $X_l(t)$ (par la formule de reconstruction du cours).

Les affirmations suivantes sont elles vraie ou fausse?

- ▶ Si f_e est trop faible, il est possible d'avoir des $n \in \mathbb{Z}$ tels que $X_l(nT_e) \neq X(nT_e)$.
- ▶ $X_l(t) = X(t)$ pour tout $t \in \mathbb{R}$ si f_e est supérieure à deux fois la plus haute fréquence présente dans le signal X(t).
- La bande passante du signal $X_l(t)$ est égale à celle de X(t), quelque soit f_e utilisée.
- ▶ Si $X_l(nT_e) = X(nT_e)$ pour tout $n \in \mathbb{Z}$, alors f_e est nécessairement supérieure à deux fois la plus haute fréquence présente dans le signal X(t).