
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2024
Gastpar & Urbanke October 14, 2024

Problem Set 4 (Graded) —Due Tuesday, November 5, before class starts
For the Exercise Sessions on Oct 15 and Oct 29

Last name First name SCIPER Nr Points

Problem 1: Lipschitz Bandits

Assume for the following that you have a bandit algorithm at your disposal that has an expected re-
gret, call it Rn , bounded by c

√
Kn log(n) , where K is the number of arms and n is the time horizon.

You have to design an algorithm for the following scenario. There are infinitely many bandits. More
precisely the bandits are indexed by x , x ∈ [0, 1] . Bandit x has mean µ(x) (which is unknown). But
you do know that the various bandits are related in the sense that

|µ(x)− µ(y)| ≤ L|x− y|, (1)

where L is a known constant. This is known as the Lipschitz bandit problem due to the Lipschitz
condition (1).

A natural approach to such a bandit problem is to discretize the space of bandits. I.e., assume that you
pick K positions 0 ≤ x1 < x2 < · · · < xK ≤ 1 and run your given bandit problem on these K bandits.

a) Bound the expected regret as a function of K , n , L and the placement of points.

b) For n and L fixed, minimize your expression with respect to K and the placement of points.

Hint: In order to simplify your computation, you might want to slightly loosen your bound.
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Solution 1.

a) Let x∗ be the position of the arm with highest reward and let µ∗ = µ(x∗) . Let i∗ be the discrete
arm that is closest to x∗ . Then by the Lipschitz condition

µ∗ ≤ µi∗ + L|xi∗ − x∗|
≤ max

i
µi + L|xi∗ − x∗|

≤ max
i

µi +
1

2
L max

i=1,··· ,K−1
|xi+1 − xi|.

Hence

Rn = µ∗n− E[

n∑
t=1

Xt]

= (µ∗ −max
i

µi)n+max
i

µin− E[

n∑
t=1

Xt]

≤ 1

2
nLmaxi=1,··· ,K−1|xi+1 − xi|+ c

√
Kn log(n).

b) We get the tightest bound for maxi=1,··· ,K−1|xi+1 − xi| if we pick the positions uniform. This will
give us 1/(K+1) . However, to simplify the minimization, let us upper bound this by 1/K . Hence,
we have to take the derivative of c

√
Kn log(n) + 1

2nL/K wrt to K and then set the result to 0

and solve for K . We get −((nL − cK
√

Kn log(n))/(2K2)) = 0 which gives us (ignoring integer
constraints) K = L(2/3)n(1/3)/(c(2/3) log(n)(1/3)) . If we plug this back into the expression we arrive
at 3

2c
(2/3)L(1/3)n(2/3) log(n)(1/3) .

Problem 2: MMSE Estimation

Consider the scenario where p(x|d) = de−dx, for x ≥ 0 (and zero otherwise), that is, the observed
data x is distributed according to an exponential with mean 1/d. Moreover, the desired variable d itself
is also exponentially distributed, with parameter λ, that is, p(d) = λe−λd.

(a) Find the MMSE estimator of d given x, and calculate the corresponding mean-squared error incurred
by this estimator.

(b) Find the MAP estimator of d given x.

Solution 2. (a) This problem is about the exponential distribution. Let us start by recalling the
basics. This distribution is supported on the non-negative real line. Its probability density function is
parameterized as λe−λd. The mean is 1/λ and the variance is 1/λ2. Thus, the second moment is 2/λ2.

Then, the joint pdf of D and X is

p(d, x) = p(d)p(x|d) = λe−λdde−dx = λde−(λ+x)d. (2)

Moreover, the marginal distribution of X is

p(x) =

∫
d

p(d, x) =

∫
d

λde−(λ+x)d. (3)

This integral is elementary and can be solved directly. Alternatively, we may rewrite it as

p(x) =

∫
d

λde−(λ+x)d =
λ

λ+ x

∫
d

d(λ+ x)e−(λ+x)d, (4)

2



at which point we recognize the integral to be the mean of an exponential distribution with parameter
(λ+ x). We know that this mean value is 1/(λ+ x). Plugging in, we thus find

p(x) =
λ

(λ+ x)2
. (5)

Finally, plugging in, we find the conditional distribution

p(d|x) = p(d, x)

p(x)
= (λ+ x)2de−(λ+x)d (6)

which, by the way, is known as the Gamma distribution Γ(2, λ+x) , but we will not use this observation
in our solutions.

Now, on to the MMSE estimator. As we have seen in class, this is simply the conditional expectation,

D̂MMSE(X = x) = E[D|X = x] =

∫
d

dp(d|x) =
∫
d

d(λ+ x)2de−(λ+x)d (7)

= (λ+ x)2
∫
d

d2e−(λ+x)d. (8)

The last integral can be solved with elementary techniques. But we will again choose to liken it to an
exponential distribution integral. Pattern matching, we would thus write

D̂MMSE(x) = (λ+ x)

∫
d

d2(λ+ x)e−(λ+x)d, (9)

and observe that this integral is simply the second moment of the exponential distribution with parameter
(λ+ x), which we know very well, thus,

D̂MMSE(x) = (λ+ x)
2

(λ+ x)2
(10)

=
2

λ+ x
(11)

To calculate the corresponding mean-squared error, we may proceed as follows:

E =

∫
d,x

(
d− 2

λ+ x

)2

p(x, d), (12)

and we already have the formula for p(x, d) = λde−(λ+x)d. So we could just brute-force tackle this integral
(which is not undoable). Alternatively, we can simplify our task by leveraging the orthogonality principle
that we have seen in class:

E = ED,X [(D − D̂MMSE)
2] (13)

= E[D2]− EX [D̂2
MMSE ]. (14)

The first term is merely E[D2] = 2/λ2. Moreover, for the second term,

EX [D̂2
MMSE ] =

∫
x

(
2

λ+ x

)2
λ

(λ+ x)2
=

∫ ∞

x=0

4λ

(λ+ x)4
=

4

3λ2
. (15)

Thus, we find

E = E[D2]− EX [D̂2
MMSE ] =

2

λ2
− 4

3λ2
(16)

=
2

3λ2
(17)
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(b) MAP estimator is

d̂MAP (x) = argmax
d

p(d|x) (18)

= argmax
d

(λ+ x)2de−(λ+x)d (19)

= argmax
d

de−(λ+x)d. (20)

Now, to extremize (max or min) any expression, we of course simply start by finding stationary points,
that is, by setting the derivative equal to zero:

d

dd

(
de−(λ+x)d

)
= e−(λ+x)d − d(λ+ x)e−(λ+x)d = e−(λ+x)d (1− d(λ+ x)) . (21)

Setting this to zero, we find d = 1/(λ+ x) as the single stationary point. Thus, the extremum of p(d|x)
can only be either at the domain boundaries or at the stationary point we have found. It’s easy to see that
at both domain boundaries, d = 0 and d = ∞, the function p(d|x) is zero, and that at the stationary
point, the function p(d|x) is positive. This implies that we have indeed found the maximum, and thus,

d̂MAP (x) =
1

λ+ x
. (22)

Problem 3: Conditional Independence and MMSE

For simplicity, throughout this problem, all random variables are assumed to be zero-mean.

(a) Show that if X and Y are conditionally independent given Z, then

E[(X − E[X|Z])(Y − E[Y |Z])] = 0. (23)

(b) Now let X and Y be jointly Gaussian (zero-mean). It is well known that if E[XY ] = 0, then X
and Y are independent. Establish this fact starting from the observation that for (zero-mean) Gaussian
random variables X and Y, we may always write Y = αX + W, for some constant α, where W is
zero-mean Gaussian independent of X. Note: This prepares you for Part (c).

(c) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that if

E[(X − E[X|Z])(Y − E[Y |Z])] = 0, (24)

then X and Y are conditionally independent given Z. Hint: Make sure to solve Part (b) first. Recall
that for three jointly Gaussians X,Y, Z, we can always write Y = γX + δZ + V, for some constants γ
and δ, where V is Gaussian and independent of X and Z.

(d) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that X and Y
are conditionally independent given Z if and only if

E[XY ]E[Z2] = E[XZ]E[Y Z]. (25)

(e) Continuing from Part (d), let us simplify: E[X2] = E[Y 2] = E[Z2] = 1, and use the notation
ρ = E[XY ]. Define a = E[XZ] and b = E[Y Z]. Find

argmax
a,b

min
f

E[(Z − f(X,Y ))2], (26)

where the inner minimum is over all measurable functions f(x, y), and the maximum is over all choices
a, b such that X and Y are conditionally independent given Z.
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Solution 3. (a) Plug in, using the factorization of the pdf:

E[(X − E[X|Z])(Y − E[Y |Z])] (27)

=

∫
x,y,z

(x− E[X|Z = z])(y − E[Y |Z = z])p(z)p(x|z)p(y|z)dxdydz (28)

=

∫
z

p(z)

(∫
x

(x− E[X|Z = z])p(x|z)dx
)(∫

y

(y − E[Y |Z = z])p(y|z)dy
)
dz (29)

=

∫
z

p(z)

(∫
x

xp(x|z)dx− E[X|Z = z]

)
︸ ︷︷ ︸

=0

(∫
y

yp(y|z)dy − E[Y |Z = z]

)
︸ ︷︷ ︸

=0

dz (30)

= 0, (31)

where we have the equality in the second line by using the conditional independence of X and Y given
Z . The third line follows by reordering the integrals for x , y , and z separately. The fourth line is
by using the fact that E(X|Z = z) does not depend on x and that

∫
x
p(x|z) = 1 . And, the whole

expression being zero follows by the definition of E(X|Z = z) and E(Y |Z = z) .

(b) This is a well-known fact and can be proved directly by writing the joint (Gaussian) PDF of X and
Y. Specifically, if E[XY ] = 0, the covariance matrix is a diagonal matrix. Hence, its inverse is also a
diagonal matrix. Plugging this into the general formula for the Gaussian PDF, we can see that it breaks
into two factors, one involving only x and the other involving only y, meaning that indeed, X and Y
are independent random variables.

However, in this sub-problem, in preparation for the following parts, you are asked to establish the same
fact from the observation that for jointly Gaussian random variables, we may write Y = αX + W. To
accomplish this, write

E[XY ] = E[X(αX +W )] (32)

= αE[X2] + E[XW ], (33)

where the last term is zero since X and W are independent of each other and W has mean zero.
Therefore, the only way in which we can have E[XY ] = 0 is if we set α = 0. This, in turn, means that
Y = αX +W = W, thus implying that X and Y are independent.

(c) As in the hint, express Y = γX + δZ + V, where V is independent of X and Z. The key is to
observe that with this,

E[Y |Z] = E[γX + δZ + V |Z] = γE[X|Z] + δZ, (34)

by the properties of conditional expectation (and the fact that V is independent of Z and zero-mean).
Then, plugging in as in (b),

0 = E[(X − E[X|Z])(Y − E[Y |Z])] (35)

= E[(X − E[X|Z])(γX + δZ + V − γE[X|Z]− δZ)] (36)

= E[(X − E[X|Z])(γX + V − γE[X|Z])] (37)

= E[(X − E[X|Z])(γ(X − E[X|Z]) + V )] (38)

= γE[(X − E[X|Z])2] + E[(X − E[X|Z])V ]. (39)

The last expectation is zero since V is independent of X and Z. Hence, we can satisfy the condition
only if we select γ = 0. That is, we must have Y = δZ + V, where V is independent of X and Z. But
this means that Y is conditionally independent of X, given Z.

(d) In class, we have seen that for jointly Gaussians, the conditional mean is equal to the linear MMSE,
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which is the key to this exercise:

E[(X − E[X|Z])(Y − E[Y |Z])] = E[(X − E[XZ]

E[Z2]
Z)(Y − E[Y Z]

E[Z2]
Z)] (40)

= E[XY ]− E[XZ]E[Y Z]

E[Z2]
. (41)

Setting this to zero, the conditional independence condition is

E[XY ]E[Z2] = E[XZ]E[Y Z]. (42)

(e) Using a = E[XZ] and b = E[Y Z], we can rewrite the conditional independence condition

E[XY ]E[Z2] = E[XZ]E[Y Z] (43)

simply as ρ = ab (plugging in the normalizing assumptions in the problem statement).

In class, we have seen that for jointly Gaussians, the conditional mean is equal to the linear MMSE,
which is the key to this exercise. Specifically, we have

min
f

E[(Z − f(X,Y ))2] = E[(Z − E[Z|X,Y ])2], (44)

and because (X,Y, Z) are jointly Gaussian, we have

E[Z|X,Y ] = (E[XZ],E[Y Z])K−1
(X,Y )(

X
Y ), (45)

which is referred to as the LMMSE estimator in the Lecture Notes. In class, we proved that the mean-
squared error of the LMMSE estimator can be expressed as (see also the Lecture Notes)

E[(Z − (E[XZ],E[Y Z])K−1
(X,Y )(

X
Y ))2] = E[Z2]− (E[XZ],E[Y Z])K−1

(X,Y )(E[XZ],E[Y Z])T . (46)

Now, plugging in the special case, and recalling that we need ρ = ab,

min
f

E[(Z − f(X,Y ))2] = 1− (a,
ρ

a
)

1

1− ρ2

(
1 −ρ
−ρ 1

)(
a
ρ
a

)
(47)

= 1− 1

1− ρ2
(a− ρ2

a
,−ρa+

ρ

a
)

(
a
ρ
a

)
(48)

= 1− 1

1− ρ2

(
a2 − ρ2 − ρ2 +

ρ2

a2

)
(49)

= 1− 1

1− ρ2

(
a2 − 2ρ2 +

ρ2

a2

)
(50)

Taking the derivative of the expression in parentheses with respect to the variable a2 directly gives
a2 = ρ as the extremum. Its second derivative is always non-negative, so this is a minimum (for the
expression in parentheses). Hence, this choice maximizes the resulting mean-squared error.

More explicitly now, this says that the maximizing choice satisfies

E[XZ] = ±
√
|ρ|. (51)

where the sign can be selected either way without affecting the resulting mean-squared error, and

E[Y Z] =
ρ

E[XZ]
. (52)

For example, assuming that ρ ≥ 0, a maximizing choice is

E[XZ] = E[Y Z] =
√
ρ. (53)

For interpretation, one could say that in a (geometric mean) sense, this Z sits “exactly halfway” between
X and Y.
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Problem 4: Fisher Information and Divergence

Suppose we are given a family of probability distributions {p( · ; θ) : θ ∈ R} on a set X , parametrized
by a real valued parameter θ . (Equivalently, a random variable X whose distribution depends on θ .)
Assume that the parametrization is smooth, in the sense that

p′(x; θ) :=
∂

∂θ
p(x; θ) and p′′(x; θ) :=

∂2

∂θ2
p(x; θ)

exist. (Note that the derivaties are with respect to the parameter θ , not with respect to x .) We will
use the notation Eθ0 [·] to denote expectations when the parameter is equal to a particular value θ0 , i.e.,
Eθ[g(X)] =

∑
x p(x; θ)g(x) .

Define the function K(θ, θ′) := D
(
p( · ; θ)∥p( · ; θ′)

)
.

(a) Show that for any θ0 ,
∂

∂θ
K(θ, θ0) =

∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)
.

(b) Show that
∂2

∂θ2
K(θ, θ0) =

∑
x

p′′(x; θ) log
p(x; θ)

p(x; θ0)
+ J(X; θ) with

J(X; θ) := Eθ

[(
p′(X; θ)/p(X; θ)

)2]
.

(c) Show that when θ is close to θ0

K(θ, θ0) =
1
2J(X; θ0)(θ − θ0)

2 + o((θ − θ0)
2)

(d) Show that J(X; θ) = −Eθ

[
∂2

∂θ2 log p(X; θ)
]
.

Solution 4. (a) We have

∂

∂θ
K(θ, θ0) =

∂

∂θ

(∑
x

p(x; θ) log
p(x; θ)

p(x; θ0)

)

=
∑
x

∂

∂θ

(
p(x; θ) log

p(x; θ)

p(x; θ0)

)
=
∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)
+ p(x; θ)

p(x; θ0)

p(x; θ)

p′(x; θ)

p(x; θ0)

=
∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)
+
∑
x

p′(x; θ)

=
∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)
+

∂

∂θ

∑
x

p(x; θ)︸ ︷︷ ︸
=1

=
∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)
.

(b) Using part (a), we have
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∂2

∂θ2
K(θ, θ0) =

∂

∂θ

(∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)

)

=
∑
x

∂

∂θ

(
p′(x; θ) log

p(x; θ)

p(x; θ0)

)
=
∑
x

(
p′′(x; θ) log

p(x; θ)

p(x; θ0)
+ p′(x; θ)

p(x; θ0)

p(x; θ)

p′(x; θ)

p(x; θ0)

)
=
∑
x

p′′(x; θ) log
p(x; θ)

p(x; θ0)
+
∑
x

p(x; θ0)
p′(x; θ)2

p(x; θ)2

=
∑
x

p′′(x; θ) log
p(x; θ)

p(x; θ0)
+ Eθ

[
p′(X; θ)2

p(X; θ)2

]
=
∑
x

p′′(x; θ) log
p(x; θ)

p(x; θ0)
+ J(X; θ).

(c) Using the Taylor expansion of K(θ, θ0) around θ0 , together with the previous answers we get

K(θ, θ0) = K(θ0, θ0) +
∂

∂θ
K(θ0, θ0)(θ − θ0) +

1

2

∂2

∂θ2
K(θ0, θ0)(θ − θ0)

2 + o((θ − θ0)
2)

=
1

2
J(X, θ0)(θ − θ0)

2 + o((θ − θ0)
2).

(d) We have

−Eθ

[
∂2

∂θ2
log p(X; θ)

]
= −

∑
x

p(x; θ)
∂2

∂θ2
log p(x; θ)

= −
∑
x

p(x; θ)
∂

∂θ

p′(x; θ)

p(x; θ)

= −
∑
x

p(x; θ)
p′′(x; θ)p(x; θ)− p′(x; θ)2

p(x; θ)2

= −
∑
x

p′′(x; θ)− p(x; θ)
p′(x; θ)2

p(x; θ)2

= − ∂2

∂θ2

∑
x

p(x; θ)︸ ︷︷ ︸
=1

+
∑
x

p(x; θ)
p′(x; θ)2

p(x; θ)2

= Eθ

[
p′(X; θ)2

p(X; θ)2

]
= J(X; θ).
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