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Problem Set 5

For the Exercise Sessions on Nov 21 and Nov 28

Last name First name SCIPER Nr Points

Problem 1: Add-3 Estimator

The add- /5 estimator qipg over [k], assigns to symbol ¢ a probability proportional to its number of
occurrences plus 3, namely,
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Furthermore, g/, has the same expected loss for every distribution p € Ap .

Problem 2: /; versus Total Variation

In class we defined the ¢; distance as

k
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Another important distance is the total variation distance drv(p,q). It is defined as

drv(p.q) = max | iezs(pi — ).

Show that if p, ¢ are two probability mass vectors (i.e. elements of the simplex) we have that drv(p,q) =
1
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Problem 3: Poisson Sampling

Assume that we have given a distribution p on X = {1,--- ,k}. Let X™ denote a sequence of n
iid samples. Let T; = T;(X™) be the number of times symbol ¢ appears in X™. Then

=t} = (Z)pfi(l —p)" "

Note that the random variables T; are dependent, since ) . T; = n. This dependence can sometimes be
inconvenient.



There is a convenient way of getting around this problem. Thit is called Poisson sampling. Let N be a
random variable distributed according to a Poisson distribution with mean n. Let X be then an iid
sequence of N variables distributed according to p.

Conditioned on N = n, what is the induced distribution of the Poisson sampling scheme?

Show that

1. T;(X") is distributed according to a Poisson random variable with mean p;n.
2. The T;(XY) are independent.

Problem 4: Uniformity Testing

Let us reconsider the problem of testing against uniformity. In the lecture we saw a particular test
statistics that required only O(vk/e?) samples where € was the ¢, distance.

Let us now derive a test from scratch. To make things simple let us consider the ¢3 distance. Recall
that the alphabet is X = {1,--- ,k}, where k is known. Let U be the uniform distribution on X', i.e.,
u; = 1/k. Let P be a given distribution with components p;. Let X™ be a set of n iid samples. A pair
of samples (X;,X;), i # j, is said to collide if X; = X, if they take on the same value.

1. Show that the expected number of collisions is equal to (%)|p||3.
2. Show that the uniform distribution minimizes this quantity and compute this minimum.

3. Show that [|p —ul|3 = ||pl|3 — %

NOTE: In words, if we want to distinguish between the uniform distribution and distributions
P that have an (2 distance from U of at least ¢, then this implies that for those distributions
|lpll3 > 1/k +e€. Together with the first point this suggests the following test: compute the number
of collisions in a sample and compare it to (5)(1/k + €/2). If it is below this threshold decide on
the uniform one. What remains is to compute the variance of the collision number as a function of
the sample size. This will tell us how many samples we need in order for the test to be reliable.

4. Let a=Y,p? and b=, p?. Show that the variance of the collision number is equal to
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by giving an interpretation of each of the terms in the above sum.
NOTE: If you don’t have sufficient time, skip this step and go to the last point.
For the uniform distribution this is equal to

(e

NOTE: You don’t have to derive this from the previous result. Just assume it.

5. Recall that we are considering the ¢3 distance which becomes generically small when k is large.
Therefore, the proper scale to consider is € = x/k. Use the Chebyshev inequality and conclude
that if we have ©(vk/k) samples then with high probability the empirical number of collisions will
be less than (%)(1/k + r/(2k)) assuming that we get samples from a uniform distribution.



NOTE: The second part, namely verifying that the number of collisions is with high probability smaller
than (3)(1/k + r/(2k)) when we get ©(vk/k) samples from a distribution with ¢3 distance at least
k/k away from a uniform distribution follows in a similar way.

HINT: Note that if p represents a vector with components p; then |p|li =, |p;| and [|p[|3 =, p?.
Problem 5: James-Stein Estimator (a) Assume that X ~ A/(0,1) and that f: R — R is such
that E[|X f(X)|] < oo and E[|f'(X)]] < co. Show that
E[X f(X)] = E[f'(X)].

Hint 1: for the derivative of the probability density function p(-) of a mean zero, unit variance
Gaussian random variable it holds that p'(z) = —xp(z) .

Hint 2: recall that integration by parts asserts that f;u(t)v’(t)dt =u(t)v(t)] — fb o' (t)v(t)dt.

a

(b) Now assume that X ~ N(u,02) and that f: R — R is such that E[[(X — u)f(X)|]] < co and
E[|f'(X)|] < oo. Re-using the result from (a), show that

E[(X — p) f(X)] = o*E[f'(X)].

For the remainder of the problem, we are concerned with assessing the performance of estimators 6 of
a mean vector § € R™, with f5-loss and corresponding risk R(6) :=E[||0 — 6(2)||3], and with data
generated according to Z = (Z1,Za, ..., Zy) ~ N(0,02I).

Assume that we write the estimator in the form 6(z) = g(z) + z with z = (21,...,2,) and g(z) =
(91(2),...,9n(2)). Consider the expression

(¢) Show that R(6,z) is an unbiased estimator of the risk, i.e., verify that E[R(0, Z)] = R(d). You
can assume without proof that the technical assumptions necessary for the result in (b) are met.

Hint: (a—b)? = (a —c+c—b)? for any c; choosing c cleverly might help you.
The above risk estimator is called Stein’s Unbiased Risk Estimate (SURE).

We assume from hereon for simplicity that ¢? =1.

In statistical inference, if one has complete knowledge about the data generating model (in our case we
know that Z ~ N(0,0%I)), it is usually a safe bet to do maximum likelihood (ML) estimation. In our
setting, the ML estimator is given by the simple identity map O 1(2) = z. Tt can be proven that for our
Gaussian model and with n = 1, one cannot “do better” (in some precise technical sense) in terms of o -
risk than 67 . Encouraged by this fact, let us analyze its performance in the general multi-dimensional
case:

(d) Assume n € N*. Calculate the risk R(fys1) of the maximum likelihood estimator.

A historically important result in statistics states that when one tries to jointly estimate multiple pa-
rameters (n > 1), it can happen that there are methods that perform strictly better than a simple
component-wise application of the best scalar (n = 1) estimator.

One such example is provided by the James-Stein estimator, which is defined as

Org(z) = (1 - TILIz_H%Q>Z

We assume from hereon that n > 3 (Remark: we do this since for n = 1, the technical assumptions
necessary for the result in b) are not met; and for n =2, ;5 = 0,1, which is not very interesting.).



(¢) Using SURE, estimate the risk of the James-Stein estimator, i.e., calculate R(0;g, Z).

Hint: recall the quotient rule which states that (ZE:?)/ = % )

(f) Calculate the risk R(fs5) — not by direct calculation (which is quite tedious) — but by exploiting
the unbiasedness of SURE and using the result in (e). How does the risk compare to that of s,
for n> 37



