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Last name First name SCIPER Nr Points

Problem 1: Add-β Estimator

The add-β estimator q+β over [k] , assigns to symbol i a probability proportional to its number of
occurrences plus β , namely,

qi
def
= qi(X

n)
def
= q+β,i(X

n)
def
=

Ti + β

n+ kβ

where Ti
def
= Ti(X

n)
def
=

∑n
j=1 1(Xj = i) . Prove that for all k ≥ 2 and n ≥ 1 ,

min
β≥0

r
l22
k,n(q+β) = r

l22
k,n(q+

√
n/k) =

1− 1
k

(
√
n+ 1)2

Furthermore, q+
√
n/k has the same expected loss for every distribution p ∈ ∆k .

Problem 2: ℓ1 versus Total Variation

In class we defined the ℓ1 distance as

∥p− q∥1 =

k∑
i=1

|pi − qi|.

Another important distance is the total variation distance dTV(p, q) . It is defined as

dTV(p, q) = max
S⊆{1,··· ,k}

|
∑
i∈S

(pi − qi)|.

Show that if p, q are two probability mass vectors (i.e. elements of the simplex) we have that dTV(p, q) =
1
2∥p− q∥1 .

Problem 3: Poisson Sampling

Assume that we have given a distribution p on X = {1, · · · , k} . Let Xn denote a sequence of n
iid samples. Let Ti = Ti(X

n) be the number of times symbol i appears in Xn . Then

{Ti = ti} =

(
n

ti

)
ptii (1− pi)

n−ti .

Note that the random variables Ti are dependent, since
∑

i Ti = n . This dependence can sometimes be
inconvenient.
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There is a convenient way of getting around this problem. Thit is called Poisson sampling. Let N be a
random variable distributed according to a Poisson distribution with mean n . Let XN be then an iid
sequence of N variables distributed according to p .

Conditioned on N = n , what is the induced distribution of the Poisson sampling scheme?

Show that

1. Ti(X
N ) is distributed according to a Poisson random variable with mean pin .

2. The Ti(X
N ) are independent.

Problem 4: Uniformity Testing

Let us reconsider the problem of testing against uniformity. In the lecture we saw a particular test
statistics that required only O(

√
k/ϵ2) samples where ϵ was the ℓ1 distance.

Let us now derive a test from scratch. To make things simple let us consider the ℓ22 distance. Recall
that the alphabet is X = {1, · · · , k} , where k is known. Let U be the uniform distribution on X , i.e.,
ui = 1/k . Let P be a given distribution with components pi . Let Xn be a set of n iid samples. A pair
of samples (Xi, Xj) , i ̸= j , is said to collide if Xi = Xj , if they take on the same value.

1. Show that the expected number of collisions is equal to
(
n
2

)
∥p∥22 .

2. Show that the uniform distribution minimizes this quantity and compute this minimum.

3. Show that ∥p− u∥22 = ∥p∥22 − 1
k .

NOTE: In words, if we want to distinguish between the uniform distribution and distributions
P that have an ℓ22 distance from U of at least ϵ , then this implies that for those distributions
∥p∥22 ≥ 1/k+ ϵ . Together with the first point this suggests the following test: compute the number
of collisions in a sample and compare it to

(
n
2

)
(1/k + ϵ/2) . If it is below this threshold decide on

the uniform one. What remains is to compute the variance of the collision number as a function of
the sample size. This will tell us how many samples we need in order for the test to be reliable.

4. Let a =
∑

i p
2
i and b =

∑
i p

3
i . Show that the variance of the collision number is equal to(

n

2

)
a+

(
n

2

)[(
n

2

)
−
(
1 +

(
n− 2

2

))]
b+

(
n

2

)(
n− 2

2

)
a2 −

(
n

2

)2

a2

=

(
n

2

)
[2b(n− 2) + a(1 + a(3− 2n))]

by giving an interpretation of each of the terms in the above sum.

NOTE: If you don’t have sufficient time, skip this step and go to the last point.

For the uniform distribution this is equal to(
n

2

)
(k − 1)(2n− 3)

k2
≤ n2

2k
.

NOTE: You don’t have to derive this from the previous result. Just assume it.

5. Recall that we are considering the ℓ22 distance which becomes generically small when k is large.
Therefore, the proper scale to consider is ϵ = κ/k . Use the Chebyshev inequality and conclude
that if we have Θ(

√
k/κ) samples then with high probability the empirical number of collisions will

be less than
(
n
2

)
(1/k + κ/(2k)) assuming that we get samples from a uniform distribution.
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NOTE: The second part, namely verifying that the number of collisions is with high probability smaller
than

(
n
2

)
(1/k + κ/(2k)) when we get Θ(

√
k/κ) samples from a distribution with ℓ22 distance at least

κ/k away from a uniform distribution follows in a similar way.

HINT: Note that if p represents a vector with components pi then ∥p∥1 =
∑

i |pi| and ∥p∥22 =
∑

i p
2
i .

Problem 5: James-Stein Estimator (a) Assume that X ∼ N (0, 1) and that f : R → R is such
that E[|Xf(X)|] < ∞ and E[|f ′(X)|] < ∞ . Show that

E[Xf(X)] = E[f ′(X)].

Hint 1: for the derivative of the probability density function p(·) of a mean zero, unit variance
Gaussian random variable it holds that p′(x) = −xp(x) .

Hint 2: recall that integration by parts asserts that
∫ b

a
u(t)v′(t)dt = u(t)v(t)|ba −

∫ b

a
u′(t)v(t)dt .

(b) Now assume that X ∼ N (µ, σ2) and that f : R → R is such that E[|(X − µ)f(X)|] < ∞ and
E[|f ′(X)|] < ∞ . Re-using the result from (a), show that

E[(X − µ)f(X)] = σ2E[f ′(X)].

For the remainder of the problem, we are concerned with assessing the performance of estimators θ̂ of
a mean vector θ ∈ Rn , with ℓ2 -loss and corresponding risk R(θ̂) := E[∥θ − θ̂(Z)∥22] , and with data
generated according to Z := (Z1, Z2, . . . , Zn) ∼ N (θ, σ2I) .

Assume that we write the estimator in the form θ̂(z) = g(z) + z with z = (z1, . . . , zn) and g(z) =
(g1(z), . . . , gn(z)) . Consider the expression

R̂(θ̂, z) = nσ2 + 2σ2
n∑

i=1

∂gi(z)

∂zi
+

n∑
i=1

g2i (z).

(c) Show that R̂(θ̂, z) is an unbiased estimator of the risk, i.e., verify that E[R̂(θ̂, Z)] = R(θ̂) . You
can assume without proof that the technical assumptions necessary for the result in (b) are met.

Hint: (a− b)2 = (a− c+ c− b)2 for any c ; choosing c cleverly might help you.

The above risk estimator is called Stein’s Unbiased Risk Estimate (SURE).

We assume from hereon for simplicity that σ2 = 1 .

In statistical inference, if one has complete knowledge about the data generating model (in our case we
know that Z ∼ N (θ, σ2I) ), it is usually a safe bet to do maximum likelihood (ML) estimation. In our

setting, the ML estimator is given by the simple identity map θ̂ML(z) = z . It can be proven that for our
Gaussian model and with n = 1 , one cannot “do better” (in some precise technical sense) in terms of ℓ2 -

risk than θ̂ML . Encouraged by this fact, let us analyze its performance in the general multi-dimensional
case:

(d) Assume n ∈ N+ . Calculate the risk R(θ̂ML) of the maximum likelihood estimator.

A historically important result in statistics states that when one tries to jointly estimate multiple pa-
rameters (n > 1 ), it can happen that there are methods that perform strictly better than a simple
component-wise application of the best scalar (n = 1) estimator.

One such example is provided by the James-Stein estimator, which is defined as

θ̂JS(z) =

(
1− n− 2

∥z∥22

)
z.

We assume from hereon that n ≥ 3 (Remark: we do this since for n = 1 , the technical assumptions

necessary for the result in b) are not met; and for n = 2 , θ̂JS = θ̂ML which is not very interesting.).
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(e) Using SURE, estimate the risk of the James-Stein estimator, i.e., calculate R̂(θ̂JS , Z) .

Hint: recall the quotient rule which states that
(u(t)
v(t)

)′
= u′(t)v(t)−u(t)v′(t)

(v(t))2 .

(f) Calculate the risk R(θ̂JS) – not by direct calculation (which is quite tedious) – but by exploiting

the unbiasedness of SURE and using the result in (e). How does the risk compare to that of θ̂ML

for n ≥ 3 ?
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