
Advanced Probability and Applications EPFL - Fall Semester 2024-2025

Midterm exam: solutions

Exercise 1. Quiz. (18 points) Answer each yes/no question below (1 pt) and provide a short
justification (proof or counter-example) for your answer (2 pts).

a) Let (Ω,F) be a measurable space and let g : Ω → Ω′ be some function onto the set Ω′. We
construct a collection F ′ of subsets of Ω′ in the following way:

F ′ = {F ′ ⊆ Ω′ : g(F ) = F ′, for some F ∈ F}.

where g(F ) = F ′ means that F ′ ⊂ Ω′ is the image of the set F . Does (Ω′,F ′) always form a
measurable space?

Answer: No. Here’s a counter example. Consider Ω = {1, 2, 3}, and the σ-field F = {{1}, {2, 3},Ω, ϕ}.
Let g(ω) be a non-injective function from Ω onto Ω′ = {1, 2} such that g(1) = g(2) = 1 and g(3) = 2.

Now, the set F ′ = {ϕ,Ω′, {1}}, which clearly is not a σ-field on Ω′. Thus, (Ω′,F ′) does not generally
form a measurable space.

b) Let {A1, A2, A3} be a collection of pairwise independent events on some probability space
(Ω,F ,P). Let B = A1 ∪A2. Are the events B and A3 also independent?

Answer: No. One counterexample is:

Ω = {1, 2, 3, 4}
F = P(Ω)

P({i}) = 1/4 for i ∈ Ω

A1 = {{1, 2}}
A2 = {{1, 3}}
A3 = {{1, 4}}

It is easy to verify that {A1, A2, A3} are pairwise independent. However, B = A1 ∪A2 and A3 are
not independent, since P(B ∩A3) = 1/4 ̸= (3/4)(1/2) = P(B)P(A3).

c) Let X,Y be two square integrable random variables. For two constants a, b ∈ R, is it true that
Cov(aX + b, Y ) = aCov(X,Y ) + b?

Answer: No, Cov(aX + b, Y ) = aCov(X,Y ).

Cov(aX + b, Y ) = E((aX + b)Y )− E(aX + b)E(Y )

= E(aXY ) + E(bY )− (aE(X) + b)E(Y )

= aE(XY ) + bE(Y )− aE(X)E(Y )− bE(Y )

= aE(XY )− aE(X)E(Y ) = aCov(X,Y ).

d) Let X be a standard Gaussian distribution i.e., X ∼ N (0, 1). Let Y be a random variable
defined as follows:

Y =

{
X, |X| < a

−X, |X| ≥ a
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where a > 0 is a constant. Then, is Y a standard Gaussian random variable?

Answer: Yes. Here, if we can show that the CDF of Y i.e., FY (t) is same as the CDF of X i.e.,
FX(t) for every t ∈ R, it will imply that Y is a standard Gaussian random variable as well.

Case - I : t ≤ −a or t ≥ a : For t ≤ −a, FY (t) = P(Y ≤ t) = P(X ≥ −t) = 1 − FX(−t) = FX(t).
Note that the last equality holds due to the fact that a pdf of a standard Gaussian random variable
is an even function. The case for t ≥ a follows analogously.

Case - II : −a < t < a : FY (t) = P(Y ≤ t) = P(−a < Y ≤ t) + P(Y ≤ −a) = P(−a < X ≤
t) + P(X ≤ −a) = FX(t).

e) Let X,Y be the same as in part d). Is Z = (X,Y ) a Gaussian random vector?

Answer: No. The vector Z := (X,Y ) is a Gaussian random vector if ∀α, β ∈ R, we have that
W := αX + βY is a Gaussian random variable. We see that:

W =

{
(α+ β)X ; if |X| < a

(α− β)X ; if |X| ≥ a

The CDF of this random variable W is discontinuous at a, and therefore cannot be Gaussian. Thus,
Z is not a Gaussian random vector.

Another way of showing that Z is not a Gaussian random variable for ∀α, β is pick α, β = 1. Then,
P(W = 0) = P(X+Y = 0) = P(|X| ≥ a) > 0. It implies that W is not a Gaussian random variable
since it is not ven continuous).

Answer:

f) Let U ∼ Uniform[0, 1] and define

Xn = n1[
0, 1

n2

](U), n = 1, 2, . . .

Does Xn converge in quadratic mean to some random variable X?

Answer: No, Xn does not converge in quadratic mean to anything. First, note that Xn converges
in probability to zero. Therefore, if it were to converge in quadratic mean to anything, it must be
zero. Then

E((Xn − 0)2) = n2 1

n2
= 1.

Thus, the limit as n goes to infinity is one and not zero which is required by the definition of
quadratic convergence.

Exercise 2. (12 points) Let X,Y be two independent random variable with X ∼ Binomial(n, p)
and Y ∼ Binomial(m, p). Recall that the pmf of a Binomial(n, p) random variable X is given by
P(X = k) =

(
n
k

)
pk(1− p)n−k.

a) Compute the probability mass function of X+Y using convolution. Hint: Recall Vandermonde’s
identity:

(
m+n
r

)
=
∑r

k=0

(
m
k

)(
n

r−k

)
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a) Compute the probability mass function of X+Y using convolution. Hint: Recall Vandermonde’s
identity:

(
m+n
r

)
=
∑r

k=0

(
m
k

)(
n

r−k

)
Answer: For k ∈ {0, 1, . . . ,m+ n},

P(X + Y = k) =

n∑
j=0

P(X = j,X + Y = k)

=

n∑
j=0

P(X = j)P(Y = k − j)

=
n∑

j=0

(
n

j

)
pj(1− p)n−j

(
m

k − j

)
pk−j(1− p)m−k+j

= pk(1− p)m+n−k
n∑

j=0

(
n

j

)(
m

k − j

)

=

(
n+m

k

)
pk(1− p)m+n−k.

Thus, X + Y ∼ Binomial(n+m, p).

b) Compute the characteristic functions of X and Y . Hint: Recall the Binomial identity (x+y)n =∑n
k=0

(
n
k

)
xkyn−k

Answer: Let’s compute the characteristic function of X.

φX(t) = E(eitX)

=
n∑

j=0

(
n

j

)
eitjpj(1− p)n−j

=

n∑
j=0

(
n

j

)
(peit)j(1− p)n−j

= (1− p+ peit)n.

Similarly, φY (t) = (1− p+ peit)m.

c) Check your result for part a). Compute the probability mass function of X + Y using the
characteristic functions in part b).

Answer: Since X and Y are independent,

φX+Y (t) = φX(t)φY (t) = (1− p+ peit)n(1− p+ peit)m = (1− p+ peit)n+m.

Thus, X + Y ∼ Binomial(n+m, p), verifying our result from part a).

Exercise 3. (12 points) For this problem, we remind you of basic definitions related to vector
spaces in the attached appendix.

3



a) Let (Ω,F ,P) be a probability space and let V be a space of all F-measurable random variables
on this space. Show that V forms a vector space over the reals.

In the interest of time you may skip axioms 1-2 and 5-8 (in the appendix) as these are trivial.

With regard to axioms 3 and 4 (in the appendix): Describe the zero-element of this vector space.
If X ∈ V is an F-measurable random variable, what is its additive inverse?

Answer: Axioms 1-2 and 5-8 follow from properties of reals, and how multiplication by a scalar
interacts with random variables.

With regard to axioms 3 and 4: The zero element is the deterministic random variable that maps
all of Ω to zero. The additive inverse of X is just −X.

b) Suppose Ω is finite. Describe a basis for V.

Answer: Ω is finite implies that F is also finite. Recall that a finite σ-field is generated by its
atoms and that this set of atoms partitions Ω. Let {A1, . . . , Ak} be the atoms of F . Then, one
possible basis for V would be {1A1 , . . . , 1Ak

}, that is, the set of indicator random variables on the
atoms of F .

First, we can confirm that {1A1 , . . . , 1Ak
} spans all of V. For every X ∈ V, X(ω) is constant on

each Ai. This follows from the fact that X is F-measurable, Thus, every such X can be written as
a linear combination of elements in {1A1 , . . . , 1Ak

}.

Secondly, we can confirm that {1A1 , . . . , 1Ak
} are linearly independent. This follows from the

fact that {A1, . . . , Ak} partitions Ω and thus 1Ai cannot be written as a linear combination of
{1A1 , . . . , 1Ai−1 , 1Ai+1 , . . . 1Ak

} for al i ∈ {1, . . . k}.

c) Suppose Ω is finite. Let G ⊂ F be a sub-σ-field and let W be the space of all G-measurable
random variables. Then, is W a linear subspace of V? Why or why not?

Answer: By part (b), W is also a vector space. Likewise, G is generated by some (smaller)
set of atoms {B1, . . . , Bk} and {1B1 , . . . , 1Bk

} forms a basis for W. Since every element in W is
G-measurable, it can be written as a linear combination of {1B1 , . . . , 1Bk

}. On the other hand,
random variables that are not G-measurable must not be constant on at least one set Bi. Such
random variables cannot be written as linear combinations of {1B1 , . . . , 1Bk

}.

Exercise 4. (16 points) Let (Ω,F ,P) be a probability space and X : Ω → R be an F-measurable
random variable.

a) Assume the pth-moment of X is finite i.e., E(|X|p) < ∞ for some p ∈ N . Then, show that ∀
p′ ∈ [0, p], we have E(|X|p′) < ∞.

Answer: Note that |X(ω)|p′ ≤ |X(ω)|p if |X(ω)| ≥ 1. However, if |X(ω)| < 1, we have that
|X(ω)|p′ < 1 + |X(ω)|p. Therefore, for every ω ∈ Ω, we have that |X(ω)|p′ < 1 + |X(ω)|p, which
implies that E(|X|p′) ≤ 1 + E(|X|p). Hence, if E(|X|p) < ∞, then E(|X|p′) < ∞ as well.
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b) Assume that X is integrable, e.i. E(|X|) < ∞. Show that exp (E(log |X|)) ≤ E(|X|). Conclude
from this that for any y1, . . . , yk ∈ R and α1, . . . , αk ≥ 0 such that

∑k
i=1 αk = 1, we have the

following inequality:

|y1|α1 |y2|α2 . . . |yk|αk ≤ α1|y1|+ α2|y2|+ · · ·+ αk|yk|.

Answer: Recall that log(·) is a concave function. On using Jensen’s inequality, we have the
following result :E(log(|X|)) ≤ log(E(|X|)), which directly implies the result to be proven.

For the second part, Let X is a discrete random variable which takes values y1, y2, · · · , yk with
probabilities α1, α2, · · · , αk, respectively (note that

∑k
i=1 αi = 1). Now, on applying the above

result on this random variable X, we have

exp

(
k∑

i=1

αi log(|yi|)

)
≤

k∑
i=1

αi|yi|

exp

(
log

(
k∏

i=1

|yi|αi

))
≤

k∑
i=1

αi|yi|

which gives us the desired result.

In class, we have seen the Cauchy-Schwarz inequality i.e., E(|XY |) ≤
√
E(X2)E(Y 2). In the next

part, we will extend it to higher moments of the random variables X and Y by proving a result
known as Holder’s inequality. That is, let p, q ≥ 1 be such that 1

p + 1
q = 1. We will show that

E(|XY |) ≤ (E(|X|p))1/p(E(|Y |q))1/q.

c) First, show that for any x, y ∈ R and p, q ≥ 1 such that 1
p + 1

q = 1, we have |xy| ≤ |x|p
p + |y|q

q .
This result is well-known as Young’s inequality for products.

Answer: Use the above result in part - b) for k = 2. Substitute y1 = xp and y2 = yq with
α1 = 1/p and α2 = 1/q.

d) Finally, let X, Y be F-measurable random variables with E(|X|max{p,q}),E(|Y |max{p,q}) < ∞.
Show that

E(|XY |)
(E(|X|p))1/p(E(|Y |q))1/q

≤ 1,

from which Holder’s inequality follows immediately.

Answer: Here, we can use the Young’s inequality for products. ∀ ω ∈ Ω, let x = X(ω)

(E(|X|p))1/p and

y = Y (ω)

(E(|Y |q))1/q . On using the above result in part - c)., we have∣∣∣∣ X(ω)Y (ω)

(E(|X|p))1/p(E(|Y |q))1/q

∣∣∣∣ ≤ |X(ω)|p

pE(|X|p)
+

|Y (ω)|q

qE(|Y |q)
Now, on taking expectation both sides w.r.t PXY , we have

E|X(ω)Y (ω)|
(E(|X|p))1/p(E(|Y |q))1/q

≤ 1

p
+

1

q
= 1

Thus, we have the desired result.

5


