
Advanced Probability and Applications EPFL - Fall Semester 2024-2025

Midterm exam

Exercise 1. Quiz. (18 points) Answer each yes/no question below (1 pt) and provide a short
justification (proof or counter-example) for your answer (2 pts).

a) Let (Ω,F) be a measurable space and let g : Ω → Ω′ be some function onto the set Ω′. We
construct a collection F ′ of subsets of Ω′ in the following way:

F ′ = {F ′ ⊆ Ω′ : g(F ) = F ′, for some F ∈ F}.

where g(F ) = F ′ means that F ′ ⊂ Ω′ is the image of set the F . Does (Ω′,F ′) always form a
measurable space?

b) Let {A1, A2, A3} be a collection of pairwise independent events on some probability space
(Ω,F ,P). Let B = A1 ∪A2. Are the events B and A3 also independent?

c) Let X,Y be two square integrable random variables. For two constants a, b ∈ R, is it true that
Cov(aX + b, Y ) = aCov(X,Y ) + b?

d) Let X be a standard Gaussian distribution i.e., X ∼ N (0, 1). Let Y be a random variable
defined as follows:

Y =

{
X, |X| < a

−X, |X| ≥ a

where a > 0 is a constant. Then, is Y a standard Gaussian random variable?

e) Let X,Y be the same as in part d). Is Z = (X,Y ) a Gaussian random vector?

f) Let U ∼ Uniform[0, 1] and define

Xn = n1[
0, 1

n2

](U), n = 1, 2, . . .

Does Xn converge in quadratic mean to some random variable X?

Exercise 2. (12 points) Let X,Y be two independent random variable with X ∼ Binomial(n, p)
and Y ∼ Binomial(m, p). Recall that the pmf of a Binomial(n, p) random variable X is given by
P(X = k) =

(
n
k

)
pk(1− p)n−k.

a) Compute the probability mass function of X+Y using convolution. Hint: Recall Vandermonde’s
identity:

(
m+n
r

)
=

∑r
k=0

(
m
k

)(
n

r−k

)
b) Compute the characteristic functions of X and Y . Hint: Recall the Binomial identity (x+y)n =∑n

k=0

(
n
k

)
xkyn−k

c) Check your result for part a). Compute the probability mass function of X + Y using the
characteristic functions in part b).
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Exercise 3. (12 points) For this problem, we remind you of basic definitions related to vector
spaces in the attached appendix.

a) Let (Ω,F ,P) be a probability space and let V be a space of all F-measurable random variables
on this space. Show that V forms a vector space over the reals.

In the interest of time you may skip axioms 1-2 and 5-8 (in the appendix) as these are trivial.

With regard to axioms 3 and 4 (in the appendix): Describe the zero-element of this vector space.
If X ∈ V is an F-measurable random variable, what is its additive inverse?

b) Suppose Ω is finite. Describe a basis for V.

c) Suppose Ω is finite. Let G ⊂ F be a sub-σ-field and let W be the space of all G-measurable
random variables. Then, is W a linear subspace of V? Why or why not?

Exercise 4. (16 points) Let (Ω,F ,P) be a probability space and X : Ω → R be an F-measurable
random variable.

a) Assume the pth-moment of X is finite i.e., E(|X|p) < ∞ for some p ∈ N . Then, show that ∀
p′ ∈ [0, p], we have E(|X|p′) < ∞.

b) Assume that X is integrable, e.i. E(|X|) < ∞. Show that exp (E(log |X|)) ≤ E(|X|). Conclude
from this that for any y1, . . . , yk ∈ R and α1, . . . , αk ≥ 0 such that

∑k
i=1 αk = 1, we have the

following inequality:

|y1|α1 |y2|α2 . . . |yk|αk ≤ α1|y1|+ α2|y2|+ · · ·+ αk|yk|.

In class, we have seen the Cauchy-Schwarz inequality i.e., E(|XY |) ≤
√
E(X2)E(Y 2). In the next

part, we will extend it to higher moments of the random variables X and Y by proving a result
known as Holder’s inequality. That is, let p, q ≥ 1 be such that 1

p + 1
q = 1. We will show that

E(|XY |) ≤ (E(|X|p))1/p(E(|Y |q))1/q.

c) First, show that for any x, y ∈ R and p, q ≥ 1 such that 1
p + 1

q = 1, we have |xy| ≤ |x|p
p + |y|q

q .
This result is well-known as Young’s inequality for products.

d) Finally, let X, Y be F-measurable random variables with E(|X|max{p,q}),E(|Y |max{p,q}) < ∞.
Show that

E(|XY |)
(E(|X|p))1/p(E(|Y |q))1/q

≤ 1,

from which Holder’s inequality follows immediately.
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Appendix for Exercise 3:

V is a vector space over R if the eight following axioms must be satisfied for every u, v, w ∈ V, and
a, b ∈ R.

1. Associativity of vector addition: u+ (v + w) = (u+ v) + w

2. Commutativity of vector addition: u+ v = v + u

3. Identity element of vector addition: There exists an element 0 ∈ V, called the zero
vector, such that v + 0 = v for all v ∈ V.

4. Inverse elements of vector addition: For every v ∈ V, there exists an element −v ∈ V,
called the additive inverse of v, such that v + (−v) = 0.

5. Compatibility of scalar multiplication with field multiplication: a(bv) = (ab)v.

6. Identity element of scalar multiplication: 1v = v

7. Distributivity of scalar multiplication with respect to vector addition: a(u+ v) =
au+ av

8. Distributivity of scalar multiplication with respect to field addition: (a + b)v =
av + bv

Given {v1, . . . , vk} ∈ V, a linear combination of elements {v1, . . . , vk} is an element of the form

a1v1 + · · ·+ akvk

for some a1, . . . , ak ∈ R.

The elements of a subset {v1, . . . , vk} are said to be linearly independent if no element vi can be
written as a linear combination of {v1, . . . , vi−1, vi+1, . . . , vk}.

The span of {v1, . . . , vk} is the set of all linear combinations of elements of {v1, . . . , vk}.

A subset of a vector space is a basis if its elements are linearly independent and span the vector
space.

A linear subspace or vector subspace W of a vector space V is a non-empty subset of V that is
closed under vector addition and scalar multiplication; that is, the sum of two elements of W and
the product of an element of W by a scalar belong to W.
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