EPFL – Automne 2025	S. Basterrechea
Analyse I – CGC, EL, MX	Exercices
Série 7	3 novembre 2025

Partie I: Limites supérieures et limites inférieurs

Définition. Soit $(a_n)_{n\geq 1}$ une suite bornée. On définit

$$\liminf_{n\to\infty} a_n := \min \left\{ \lim_{k\to\infty} a_{n_k} : (a_{n_k})_{k\geq 1} \text{ est une s.s. convergente de } (a_n) \right\}$$

$$\limsup_{n \to \infty} a_n := \max \left\{ \lim_{k \to \infty} a_{n_k} : (a_{n_k})_{k \ge 1} \text{ est une s.s. convergente de } (a_n) \right\}$$

Exercice 1.

Pour toutes les suites (x_n) suivantes, calculer $\liminf_{n\to\infty} x_n$ et $\limsup_{n\to\infty} x_n$.

a)
$$x_n = \frac{2 + (-3)^n}{5 + 3^n}$$

c)
$$x_n = 2\sin\left(\frac{2\pi n}{3}\right) - 3(-1)^n$$

b)
$$x_n = \frac{\cos(\pi n)}{\frac{1}{2} + \cos(\frac{\pi n}{2})}$$

$$d) x_n = \frac{(-1)^n}{n}$$

Solution.

a) On a

$$(-3)^n = \begin{cases} 3^n & \text{si } n \text{ est pair} \\ -3^n & \text{si } n \text{ est impair} \end{cases}$$

Ainsi,

$$x_n = \begin{cases} \frac{2+3^n}{5+3^n} & \text{si } n \text{ est pair} \\ \frac{2-3^n}{5+3^n} & \text{si } n \text{ est impair} \end{cases}$$

Pour la sous-suite $(x_{2k})_{k\in\mathbb{N}}$ des pairs, on a

$$\lim_{k \to \infty} x_{2k} = \lim_{k \to \infty} \frac{2 + 3^{2k}}{5 + 3^{2k}} = \lim_{k \to \infty} \frac{5 + 3^{2k} - 3}{5 + 3^{2k}} = 1 - \lim_{k \to \infty} \frac{3}{5 + 3^{2k}} = 1.$$

La sous-suite $(x_{2k+1})_{k\in\mathbb{N}}$ des impairs, on a

$$\lim_{k \to \infty} x_{2k+1} = \lim_{k \to \infty} \frac{2 - 3^{2k+1}}{5 + 3^{2k+1}} = \lim_{k \to \infty} \frac{-5 - 3^{2k+1} + 7}{5 + 3^{2k+1}} = -1 + \lim_{k \to \infty} \frac{7}{5 + 3^{2k+1}} = -1.$$

Vu que les sous-suites des pairs et des impairs couvrent toute la suite, on déduit que

$$\lim_{n \to \infty} \sup x_n = \max\{-1, 1\} = 1, \qquad \liminf_{n \to \infty} x_n = \min\{-1, 1\} = -1.$$

b) On a

$$\cos(\pi n) = \begin{cases} 1 & \text{si } n \text{ est pair} \\ -1 & \text{si } n \text{ est impair} \end{cases}$$

et

$$\cos\left(\frac{n\pi}{2}\right) = \begin{cases} 1 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k \\ 0 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k+1 \\ -1 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k+2 \\ 0 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k+3 \end{cases}$$

Ainsi,

$$x_n = \begin{cases} \left(\frac{1}{2} + 1\right)^{-1} & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k \\ -\left(\frac{1}{2}\right)^{-1} & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k + 1 \\ \left(\frac{1}{2} - 1\right)^{-1} & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k + 2 \\ -\left(\frac{1}{2}\right)^{-1} & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k + 3 \end{cases}$$

$$= \begin{cases} 2/3 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k \\ -2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k + 1 \\ -2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k + 2 \\ -2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 4k + 3 \end{cases}$$

Étant les quatre sous-suites constantes, on a

$$\lim_{k \to \infty} x_{4k} = \frac{2}{3}$$

$$\lim_{k \to \infty} x_{4k+1} = -2$$

$$\lim_{k \to \infty} x_{4k+2} = -2$$

$$\lim_{k \to \infty} x_{4k+3} = -2$$

Vu que nos quatre sous-suites couvrent toute la suite, on a

$$\limsup_{n \to \infty} x_n = \max\left\{-2, \frac{2}{3}\right\} = \frac{2}{3}, \quad \liminf_{n \to \infty} x_n = \min\left\{-2, \frac{2}{3}\right\} = -2.$$

c) Méthode intuitive directe : on a

$$\sin\left(\frac{2n\pi}{3}\right) = \begin{cases} 0 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k \\ \sqrt{3}/2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k+1 \\ -\sqrt{3}/2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k+2 \end{cases}$$

et

$$(-1)^n = \begin{cases} 1 & \text{si } n \text{ est pair} \\ -1 & \text{si } n \text{ est impair} \end{cases}$$

La suite (x_n) est maximisée $si \sin\left(\frac{2\pi n}{3}\right) = \sqrt{3}/2$ et $(-1)^n = -1$ ce qui arrive $si \ n = 6k + 1$. De même, elle est minimisée $si \sin\left(\frac{2\pi n}{3}\right) = -\sqrt{3}/2$ et $(-1)^n = 1$ ce qui arrive $si \ n = 6k + 2$. D'où

$$\lim_{n \to \infty} \sup x_n = \sqrt{3} + 3, \qquad \lim_{n \to \infty} \inf x_n = -\sqrt{3} - 3.$$

Méthode rigoureuse : on a

$$\sin\left(\frac{2n\pi}{3}\right) = \begin{cases} 0 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k \\ \sqrt{3}/2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k+1 \\ -\sqrt{3}/2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k+2 \end{cases}$$

et

$$(-1)^n = \begin{cases} 1 & \text{si } n \text{ est pair} \\ -1 & \text{si } n \text{ est impair} \end{cases}$$

Ceci nous permet d'identifier tous les cas possibles :

$$x_n = \begin{cases} 0-3 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 6k \\ \sqrt{3}+3 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 6k+1 \\ -\sqrt{3}-3 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 6k+2 \\ 0+3 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 6k+3 \\ \sqrt{3}-3 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 6k+4 \\ -\sqrt{3}+3 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 6k+5 \end{cases}$$

Ainsi,

$$\lim_{k \to \infty} x_{6k} = -3$$

$$\lim_{k \to \infty} x_{6k+1} = \sqrt{3} + 3$$

$$\lim_{k \to \infty} x_{6k+2} = -\sqrt{3} - 3$$

$$\lim_{k \to \infty} x_{6k+3} = 3$$

$$\lim_{k \to \infty} x_{6k+4} = \sqrt{3} - 3$$

$$\lim_{k \to \infty} x_{6k+5} = -\sqrt{3} + 3$$

Vu que nos sous-suites couvrent toute la suite, en comparant les valeurs on peut déduire que

$$\limsup_{n \to \infty} x_n = \sqrt{3} + 3, \qquad \liminf_{n \to \infty} x_n = -\sqrt{3} - 3.$$

d) Pour cet exercice, il existe deux méthodes.

M'ethode~1:montrer~que~la~suite~converge

 $On \ a \ que$

$$|x_n| = \frac{1}{n}$$
 et $\lim_{n \to \infty} \frac{1}{n} = 0$

Par l'exericice 1 de la série 6,

$$\lim_{n \to \infty} x_n = 0,$$

et donc

$$\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} x_n = 0.$$

Méthode 2: Étudier les sous-suites des pairs et des impairs séparémment $On\ a$

$$(-1)^n = \begin{cases} 1 & \text{si } n \text{ est pair} \\ -1 & \text{si } n \text{ est impair} \end{cases}$$

Ainsi,

$$x_n = \begin{cases} 1/n & \text{si } n \text{ est pair} \\ -1/n & \text{si } n \text{ est impair} \end{cases}$$

Pour la sous-suite $(x_{2k})_{k\in\mathbb{N}}$ des pairs, on a

$$\lim_{k \to \infty} x_{2k} = \lim_{k \to \infty} \frac{1}{2k} = 0.$$

Pour la sous-suite $(x_{2k+1})_{k\in\mathbb{N}}$ des impairs, on a

$$\lim_{k \to \infty} x_{2k+1} = \lim_{k \to \infty} \frac{-1}{2k+1} = 0.$$

Vu que nos deux sous-suites couvrent toute la suite, on a

$$\lim_{n \to \infty} \sup x_n = \max\{0\} = 0, \qquad \liminf_{n \to \infty} x_n = \min\{0\} = 0.$$

Exercice 2.

Soit $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ deux suites réelles bornées.

Vrai ou faux?

- a) $\limsup_{n\to\infty} (a_n + b_n) = (\limsup_{n\to\infty} a_n) + (\limsup_{n\to\infty} b_n)$
- b) $\limsup_{n\to\infty} (a_n \cdot b_n) = (\limsup_{n\to\infty} a_n) \cdot (\limsup_{n\to\infty} b_n)$

Solution.

a) FAUX.

Prenons par exemple $a_n = (-1)^n$ et $b_n = (-1)^{n+1}$. On a alors

$$\lim_{n \to \infty} \sup_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{n \to \infty} b_n = 1, \qquad (\lim_{n \to \infty} \sup_{n \to \infty} a_n) + (\lim_{n \to \infty} \sup_{n \to \infty} b_n) = 2.$$

Par contre

$$a_n + b_n = 0,$$

$$\lim_{n \to \infty} \sup(a_n + b_n) = 0 \neq 2.$$

b) FAUX.

Prenons par exemple $a_n = (-1)^n$ et $b_n = (-1)^{n+1}$. On a alors

$$\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} b_n = 1, \qquad (\limsup_{n \to \infty} a_n) \cdot (\limsup_{n \to \infty} b_n) = 1.$$

Par contre

$$a_n \cdot b_n = (-1)^{2n+1}, \quad \limsup_{n \to \infty} (a_n \cdot b_n) = -1 \neq 1.$$

Partie II : Séries réelles

Exercice 3 (Série géométrique).

a) Soit $r \in \mathbb{R} \setminus \{1\}$. Démontrer la formule

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}.$$

b) Montrer que $\sum_{k=0}^n r^k$ converge si et seulement si -1 < r < 1, et dans ce cas

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}.$$
c) Calculer
$$\sum_{k=1}^{\infty} \frac{1}{2^k}.$$
d) Calculer
$$\sum_{k=2}^{\infty} \left(-\frac{1}{3}\right)^k.$$

Solution.

a) Méthode 1 : par récurrence. Si n = 0, alors nous avons

$$\sum_{k=0}^{n} r^k = r^0 = 1 \qquad et \qquad \frac{1 - r^{0+1}}{1 - r} = 1.$$

Soit $n \in \mathbb{N}^*$ et supposons que

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}.$$

Nous voulons montrer que

$$\sum_{k=0}^{n+1} r^k = \frac{1 - r^{n+2}}{1 - r}.$$

Nous développons la série :

$$\begin{split} \sum_{k=0}^{n+1} r^k &=& \sum_{k=0}^n r^k + r^{n+1} = \frac{1 - r^{n+1}}{1 - r} + r^{n+1} \\ &=& \frac{1 - r^{n+1} + r^{n+1} - r^{n+2}}{1 - r} = \frac{1 - r^{n+2}}{1 - r}, \end{split}$$

et c'est ce qu'il fallait démontrer.

Methode 2 : démonstration directe. Pour tout $n \in \mathbb{N}$, nous écrivons

$$S_n = \sum_{k=0}^n r^k = 1 + r + r^2 + \dots + r^n$$

$$= 1 + r + r^2 + \dots + r^n + r^{n+1} - r^{n+1}$$

$$= 1 + r \cdot S_n - r^{n+1}$$

$$\implies$$
 $S_n - r \cdot S_n = 1 - r^{n+1} \implies S_n = \frac{1 - r^{n+1}}{1 - r}.$

b) Il suffit de voir que

$$\lim_{n \to \infty} r^n = \begin{cases} \infty & si \ r > 1 \\ 1 & si \ r = 1 \\ 0 & si \ -1 < r < 1 \\ \nexists & si \ r \le -1. \end{cases}$$

Ainsi, par le critère des séries convergentes, la seule possibilité d'avoir le convergence de la série géométrique est -1 < r < 1. Dans ce cas, par la formule montrée en (a),

$$\sum_{k=0}^{\infty} r^k = \lim_{n \to \infty} \frac{1 - r^{n+1}}{1 - r} = \frac{1 - \lim_{n \to \infty} r^{n+1}}{1 - r} = \frac{1}{1 - r}.$$

c)
$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \sum_{k=0}^{\infty} \frac{1}{2^k} - 1 = \frac{1}{1 - \frac{1}{2}} - 1 = 2 - 1 = 1.$$

$$d) \sum_{k=2}^{\infty} \left(-\frac{1}{3} \right)^k = \sum_{k=0}^{\infty} \left(-\frac{1}{3} \right)^k - 1 + \frac{1}{3} = \frac{1}{1 + \frac{1}{3}} - \frac{2}{3} = \frac{3}{4} - \frac{2}{3} = \frac{1}{12}.$$

Exercice 4.

Soit $(a_n)_{n>1}$ une suite réelle.

Vrai ou faux?

- a) Si $\sum_{n=1}^{\infty} (-1)^n a_n$ converge, alors $\lim_{n \to \infty} a_n = 0$.
- b) Si $\lim_{n\to\infty} a_n = 0$, alors $\sum_{n=1}^{\infty} a_n$ converge.
- c) Si $\sum_{n=1}^{\infty} a_n$ converge absolument, alors $\sum_{n=1}^{\infty} (-1)^n a_n$ converge.
- d) Si $(a_n)_{n\geq 1}$ est strictement décroissante, alors $\sum_{n=1}^{\infty} (-1)^n a_n$ converge.
- e) Si $\sum_{n=1}^{\infty} a_n$ converge, alors $\sum_{n=1}^{\infty} a_n^2$ converge.
- f) Si $\sum_{n=1}^{\infty} a_n$ converge absolument, alors $\sum_{n=1}^{\infty} a_n^2$ converge.
- g) La série $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converge.

Solution.

a) VRAI.

Comme la série converge, on a $\lim_{n\to\infty} (-1)^n a_n = 0$ par le critère nécessaire de convergence. Ainsi, on a $0 = \lim_{n\to\infty} |(-1)^n a_n| = \lim_{n\to\infty} |a_n|$. La proposition en suit par le corollaire au théorème des deux gendarmes.

b) FAUX.

Prendre par exemple la suite $a_n = \frac{1}{n}$. Elle converge vers 0, mais on a vu au cours que la série harmonique $\sum_{n=0}^{+\infty} \frac{1}{n}$ diverge. Noter que cet énoncé est la réciproque du critère nécessaire pour la convergence, qui justement est seulement nécessaire mais pas suffisant.

c) VRAI.

Comme $|(-1)^n a_n| = |a_n|$ et $\sum_{n=1}^{\infty} |a_n|$ converge (c-à-d $\sum_{n=1}^{\infty} a_n$ converge absolument), la série $\sum_{n=0}^{\infty} |(-1)^n a_n|$ converge.

d) FAUX.

Prendre par exemple les suites $a_n = -n$ ou $a_n = 1 + \frac{1}{n}$ qui sont strictement décroissantes. Vu que $(-1)^n a_n$ ne converge pas vers zéro, les séries associées divergent.

e) FAUX.

Prendre par exemple la suite $a_n = \frac{(-1)^n}{\sqrt{n}}$. Par le critère des suites alternées, la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converge. Par contre $a_n^2 = \frac{1}{n}$, dont série associée (série harmonique) diverge.

f) VRAI.

 $Si \sum_{n=0}^{\infty} |a_n|$ converge, alors par le critère necéssaire on $a \lim_{n \to \infty} |a_n| = 0$. Il existe donc $n_0 \in \mathbb{N}^*$ tel que $|a_n| < 1$ pour tout $n \ge n_0$ (définition de convergence d'une suite avec $\varepsilon = 1$). Par conséquent, $|a_n|^2 < |a_n|$ pour tout $n \ge n_0$ et ainsi la série $\sum_{n=1}^{\infty} |a_n|^2 = \sum_{n=1}^{\infty} a_n^2$ converge par le critère de comparaison.

g) FAUX.

Pour tout $n \ge 1$, on a que $\sqrt{n} \le n$ et donc $\frac{1}{n} \le \frac{1}{\sqrt{n}}$. Comme la série harmonique diverge, on conclut par le critère de comparaison que la série en question diverge aussi.

Exercice 5.

A l'aide des critères de convergence, déterminer si la série donnée converge ou diverge :

a)
$$\sum_{n=1}^{\infty} \left(\frac{3n+2}{4n+5} \right)^n$$

d)
$$\sum_{n=1}^{\infty} \frac{1}{3n-2}$$

g)
$$\sum_{n=1}^{\infty} \frac{n(n+4)(n-3)}{7n^3+n+2}$$

$$b) \sum_{n=1}^{\infty} \frac{n^4}{3^n}$$

e)
$$\sum_{n=1}^{\infty} (\sqrt{n^2 + 7} - n)$$
 h) $\sum_{n=1}^{\infty} \frac{\sqrt{n+4} - \sqrt{n}}{n}$

$$h) \sum_{n=1}^{\infty} \frac{\sqrt{n+4} - \sqrt{n}}{n}$$

c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n-2}$$

f)
$$\sum_{n=1}^{\infty} 1 - \cos\left(\frac{\pi}{n+1}\right)$$

i)
$$\sum_{k=1}^{\infty} \frac{k^k}{k!}$$

<u>Indication</u>: Pour la série (f), utiliser l'égalité: $1 - \cos(x) = 2\sin(\frac{x}{2})^2$, pour tout $x \in \mathbb{R}$.

Solution.

a) Par le critère de Cauchy, la série converge (absolument), car

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left| \frac{3n+2}{4n+5} \right| = \lim_{n \to \infty} \frac{3n+2}{4n+5} = \frac{3}{4} < 1.$$

b) Par le critère de d'Alembert, la série converge (absolument), car

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^4}{3n^4} \right| = \lim_{n \to \infty} \frac{(n+1)^4}{3n^4} = \frac{1}{3} < 1.$$

- c) Cette série converge par le critère des séries alternées. En effet, $a_n = \frac{(-1)^n}{3n-2}$ satisfait les trois conditions de ce critère :
 - le signe de a_n change avec la parité de n,
 - la suite des valeurs absolues $|a_n| = \frac{1}{3n-2}$ est décroissante,
 - $\lim_{n\to\infty} a_n = 0.$
- d) Le dénominateur étant de degré 1, on peut deviner que la série diverge. Pour le montrer, on peut la minorer par la série harmonique :

$$\sum_{n=1}^{\infty} \frac{1}{\underbrace{3n-2}_{<3n}} > \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

Par le critère de comparaison, notre série diverge.

e) On a

$$\sqrt{n^2 + 7} - n = \frac{\left(\sqrt{n^2 + 7} - n\right)\left(\sqrt{n^2 + 7} + n\right)}{\sqrt{n^2 + 7} + n} = \frac{7}{\sqrt{n^2 + 7} + n} = \frac{1}{n} \underbrace{\frac{7}{\sqrt{1 + \frac{7}{n^2} + 1}}}_{<4} > \frac{7}{4n}.$$

Ainsi,

$$\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 7} - n \right) > \frac{7}{4} \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

Par le critère de comparaison, notre série diverge.

f) On a

$$1 - \cos\left(\frac{\pi}{n+1}\right) \stackrel{(1)}{=} 2\left(\sin\left(\frac{\pi}{2(n+1)}\right)\right)^2 \stackrel{(2)}{\leq} 2\left(\frac{\pi}{2(n+1)}\right)^2 = \frac{\pi^2}{2(n+1)^2} < \frac{\pi^2}{2}\frac{1}{n^2},$$

où on a utilisé la trigonométrie en $^{(1)}$ et l'inégalité $\sin(x) \le x$ pour $x \ge 0$ en $^{(2)}$.

 $\begin{array}{l} \textit{Comme la s\'erie} \; \sum_{n=1}^{\infty} \frac{1}{n^2} \; \textit{converge, la s\'erie} \; \sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{\pi}{n+1}\right)\right) \; \textit{converge (absolument) par le crit\`ere de comparaison.} \end{array}$

- g) Cette série diverge car $\lim_{n\to\infty} \frac{n(n+4)(n-3)}{7n^3+n+2} = \frac{1}{7} \neq 0$ et le critère nécessaire de convergence n'est pas satisfait.
- h) D'abord, on a que

$$\frac{\sqrt{n+4}-\sqrt{n}}{n} = \frac{4}{n(\sqrt{n+4}+\sqrt{n})} = \frac{1}{n^{\frac{3}{2}}} \underbrace{\frac{4}{\sqrt{1+\frac{4}{n}+1}}}_{>2} < 2\frac{1}{n^{\frac{3}{2}}}.$$

Ainsi, par le corollaire du critère de comparaison $(p = \frac{3}{2} > 1)$, la série converge.

i) On applique le critère de d'Alembert :

$$\left| \frac{\frac{(k+1)^{k+1}}{(k+1)!}}{\frac{k^k}{k!}} \right| = \frac{1}{k+1} \frac{(k+1)^{k+1}}{k^k} = \frac{(k+1)^k}{k^k} = \left(\frac{k+1}{k}\right)^k = \left(1 + \frac{1}{k}\right)^k.$$

Or, vu que

$$\lim_{k\to\infty}\left(1+\frac{1}{k}\right)^k=e>1,$$

la série diverge.

Exercice 6.

Étudier la convergence des séries suivantes en fonction de la valeur du paramètre $c \in \mathbb{R}$.

a)
$$\sum_{n=1}^{\infty} \left(\frac{c}{1-c}\right)^n$$
, (avec $c \neq 1$)

c)
$$\sum_{n=1}^{\infty} \left(\sin\left(\frac{\pi c}{2}\right) \right)^n$$

b)
$$\sum_{1}^{\infty} n \cdot c^n$$

d)
$$\sum_{n=1}^{\infty} \frac{c^n n!}{n^n}$$

Quelles sont les valeurs des séries (a) et (c) lorsqu'elles convergent?

Solution.

a) La série géométrique $\sum_{n=1}^{\infty} \left(\frac{c}{1-c}\right)^n \ converge \ absolument \ \Leftrightarrow \ \left|\frac{c}{1-c}\right| < 1 \ \Leftrightarrow \ c < \frac{1}{2}.$ $\sum_{n=1}^{\infty} \left(\frac{c}{1-c}\right)^n = \sum_{n=0}^{\infty} \left(\frac{c}{1-c}\right)^n - 1 = \frac{1}{1-\frac{c}{1-c}} - 1 = \frac{1-c}{1-c-c} - 1 = \frac{c}{1-2c}.$

b) Pour c=0 la convergence vers 0 est évidente et on peut supposer que $c\neq 0$. Alors

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left(\frac{n+1}{n} |c| \right) = |c|,$$

ce qui nous permet de conclure, grâce au critère de d'Alembert, que la série converge absolument si |c| < 1 et qu'elle diverge si |c| > 1. $Si c = \pm 1$, la série diverge, car son terme général, $n(\pm 1)^n$, ne tend pas vers 0.

c) Il s'agit d'une série géométrique. Pour c=2k+1 avec $k \in \mathbb{N}$, on a $\left|\left(\sin\left(\frac{\pi c}{2}\right)\right)^n\right|=1$ pour tout $n \in \mathbb{N}^*$ et donc la série diverge.

Pour $c \neq 2k+1$ avec $k \in \mathbb{N}$, on a $\left|\sin\left(\frac{\pi c}{2}\right)\right| < 1$, et donc la série converge absolument vers

$$\sum_{n=1}^{\infty} \left(\sin\left(\frac{\pi c}{2}\right) \right)^n = \sum_{n=0}^{\infty} \left(\sin\left(\frac{\pi c}{2}\right) \right)^n - 1 = \frac{1}{1 - \sin\left(\frac{\pi c}{2}\right)} - 1 = \frac{\sin\left(\frac{\pi c}{2}\right)}{1 - \sin\left(\frac{\pi c}{2}\right)} .$$

d) Pour c = 0, la série converge, car elle est égale à zéro. Soit donc $c \neq 0$. En utilisant le critère de d'Alembert, on a

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \left(\frac{c^{n+1}(n+1)!}{(n+1)^{n+1}} \right) \left(\frac{n^n}{c^n n!} \right) \right| = \lim_{n\to\infty} \left| c \left(\frac{n}{n+1} \right)^n \right| = \lim_{n\to\infty} \frac{|c|}{\left(1+\frac{1}{n}\right)^n} = \frac{|c|}{e} .$$

Ainsi la série converge absolument si |c| < e et elle diverge si |c| > e (et on obtient aucune information si |c| = e).

Si $c = \pm e$, la suite des valeurs absolues $(|a_n|)_{n \ge 1}$ est croissante :

$$|a_{n+1}| = |a_n| \cdot \frac{e}{\left(1 + \frac{1}{n}\right)^n} > |a_n|,$$

car la suite $b_n = \left(1 + \frac{1}{n}\right)^n$ croît vers e et donc $b_n < e \quad \forall n \in \mathbb{N}$. Comme $|a_1| = |c| = e$, il suit que $\lim_{n \to \infty} a_n \neq 0$. Le critère nécessaire pour la convergence d'une série n'est donc pas satisfait et la série diverge.

Exercices challenges.

Exercice 7.

a) Soit $(a_n)_{n\geq 1}$ une suite réelle bornée et $(b_n)_{n\geq 1}$ une suite convergente vers L>0. Démontrer que

$$\lim \sup_{n \to \infty} (a_n \cdot b_n) = L \cdot \lim \sup_{n \to \infty} a_n \qquad \text{et} \qquad \lim \inf_{n \to \infty} (a_n \cdot b_n) = L \cdot \lim \inf_{n \to \infty} a_n$$

Rappels:

- La limite d'un produit de deux suites convergentes est le produit des limites.
- Si une suite converge, alors toutes ses sous-suites convergent vers la même limite.
- b) En déduire $\liminf_{n\to\infty} x_n$ et $\limsup_{n\to\infty} x_n$ pour

$$x_n = \left(\frac{2n^2 - 2}{n^2 + n}\right) \sin\left(\frac{2\pi n}{3}\right).$$

Solution.

a) Nous montrons la première égalité, la seconde étant identique. Puisque (b_n) converge vers L, alors toutes ses sous-suites convergent vers L. Soit $(a_{n_k})_{k\geq 1}$ une sous-suite convergente de (a_n) . On a alors par la propriété de multiplication des limites de suites convergentes

$$\lim_{k \to \infty} (a_{n_k} \cdot b_{n_k}) = L \cdot (\lim_{k \to \infty} a_{n_k}).$$

En prennant le maximum des limites sur toutes les sous-suites convergentes de (a_n) , et puisque L > 0, nous avons donc

$$\lim_{n \to \infty} \sup(a_n \cdot b_n) = \max \{ \lim_{k \to \infty} (a_{n_k} \cdot b_{n_k}) : (a_{n_k})_{k \ge 1} \text{ est une s.s. convergente de } (a_n) \} \\
= \max \{ L \cdot \lim_{k \to \infty} a_{n_k} : (a_{n_k})_{k \ge 1} \text{ est une s.s. convergente de } (a_n) \} \\
= L \cdot \max \{ \lim_{k \to \infty} a_{n_k} : (a_{n_k})_{k \ge 1} \text{ est une s.s. convergente de } (a_n) \} \\
= L \cdot \lim_{n \to \infty} \sup_{n \to \infty} a_n.$$

b) Puisque $\lim_{n\to\infty}\frac{2n^2-2}{n^2+n}=2$, nous avons par ce qui précède

$$\liminf_{n \to \infty} x_n = 2 \cdot \liminf_{n \to \infty} \sin\left(\frac{2\pi n}{3}\right), \qquad \limsup_{n \to \infty} x_n = 2 \cdot \limsup_{n \to \infty} \sin\left(\frac{2\pi n}{3}\right).$$

Puisque

$$\sin\left(\frac{2n\pi}{3}\right) = \begin{cases} 0 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k \\ \sqrt{3}/2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k+1 \\ -\sqrt{3}/2 & si \ \exists k \in \mathbb{N} \ tel \ que \ n = 3k+2 \end{cases}$$

nous avons directement

$$\liminf_{n \to \infty} x_n = -\sqrt{3}, \qquad \limsup_{n \to \infty} x_n = \sqrt{3}.$$

Exercice 8.

Le but de cet exercice est de montrer que la série harmonique diverge, c-à-d

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

On propose de procéder de la façon suivante. Soit

$$S_n = \sum_{k=1}^n \frac{1}{k}.$$

Considérer la sous suite $(S_{n_j})_{j\geq 1}\subset (S_n)$ donnée par $n_j=2^j$.

a) Montrer par récurrence que pour tout $j \ge 1$,

$$S_{n_j} = 1 + \sum_{m=1}^{j} \sum_{k=2^{m-1}+1}^{2^m} \frac{1}{k}$$

(Pour mieux visualiser, commencez par écrire $S_{n_1},\,S_{n_2}$ et S_{n_3} .)

b) En utilisant que, pour tout $k \in \mathbb{N}$ tel que $2^{m-1} + 1 \le k \le 2^m$, on a $\frac{1}{k} \ge \frac{1}{2^m}$, montrer que

$$S_{n_j} \ge 1 + \frac{j}{2}.$$

c) En déduire que $\lim_{j\to\infty} S_{n_j} = +\infty$ et donc (S_n) diverge.

Solution.

a) On montre par récurrence que

$$S_{n_j} = \sum_{k=1}^{2^j} \frac{1}{k} = 1 + \sum_{m=1}^j \sum_{k=2^{m-1}+1}^{2^m} \frac{1}{k}.$$

Initialisation : Pour j = 1, le membre de gauche est

$$\sum_{k=1}^{2^1} \frac{1}{k} = 1 + \frac{1}{2}.$$

tandis que le membre de droite est

$$1 + \sum_{m=1}^{1} \sum_{k=2^{m-1}+1}^{2^m} \frac{1}{k} = 1 + \sum_{k=2^{m-1}+1}^{2^1} \frac{1}{k} = 1 + \frac{1}{2}.$$

Vu qu'on a la même chose, on a bien que l'égalité pour j = 1.

Pas de récurrence : Supposons que

$$\sum_{k=1}^{2^{j}} \frac{1}{k} = 1 + \sum_{m=1}^{j} \sum_{k=2^{m-1}+1}^{2^{m}} \frac{1}{k}.$$

et montrons que

$$\sum_{k=1}^{2^{j+1}} \frac{1}{k} = 1 + \sum_{m=1}^{j+1} \sum_{k=2^{m-1}+1}^{2^m} \frac{1}{k}.$$

 $On \ a$

$$\sum_{k=1}^{2^{j+1}} \frac{1}{k} = \sum_{k=1}^{2^{j}} \frac{1}{k} + \sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \overset{H.R.}{=} 1 + \sum_{m=1}^{j} \sum_{k=2^{m-1}+1}^{2^{m}} \frac{1}{k} + \sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} = 1 + \sum_{m=1}^{j+1} \sum_{k=2^{m-1}+1}^{2^{m}} \frac{1}{k}$$

qui est le résultat voulu.

b) En utilisant l'indication, on a

$$1 + \sum_{m=1}^{j} \sum_{k=2^{m-1}+1}^{2^m} \frac{1}{k} \ge 1 + \sum_{m=1}^{j} \sum_{k=2^{m-1}+1}^{2^m} \frac{1}{2^m}$$

$$= 1 + \sum_{m=1}^{j} \frac{1}{2^m} \sum_{\substack{k=2^{m-1}+1 \\ =2^m-2^{m-1}}}^{2^m} 1$$

$$= 1 + \sum_{m=1}^{j} \frac{2^m - 2^{m-1}}{2^m}$$

$$= 1 + \sum_{m=1}^{j} \left(1 - \frac{1}{2}\right)$$

$$= 1 + \sum_{m=1}^{j} \frac{1}{2}$$

$$= 1 + \frac{j}{2}.$$

c) Vu que $\lim_{j\to\infty} 1 + \frac{j}{2} = +\infty$ et que $S_{n_j} \geq 1 + \frac{j}{2}$, on a que $\lim_{j\to\infty} S_{n_j} = +\infty$. On conclut finalement que (S_n) a une sous-suite divergente et donc (S_n) ne peut pas converger. De plus, vu que (S_n) est croissante, on a

$$\sum_{k=1}^{\infty} \frac{1}{k} = \lim_{n \to \infty} S_n = +\infty.$$