Dynamics of spin in magnetic field
(care of constant field and Lanma Precentar). 1) Recap about the Bloch sphere. We saw that a geral parametrization for qubit state vectors in \mathbb{C}^2 is $14) = (cos \frac{9}{2}) (1^1) + (sin \frac{9}{2})e^{i9} 11$ In this chapter $\{\uparrow\}$ = $\{\circ\}$ = $\{\circ\}$ $(\sqrt{12}) = 112 = (9)$. we use a metation that is intruditive when talking about spie.

 $\overline{\mathcal{Q}}$

 11), He) are athogonal (Z basis)

 $|+\rangle$, $|-\rangle$ are otherford $(X \text{ km}^{\prime})$ $\frac{1}{\sqrt{2}}(19) + (3) = \frac{1}{2}(19) - (3)$
 $\frac{1}{2}(19) + (3) = \frac{1}{2}(19) + 113)$

 $\frac{1}{16}$ (1) + i14)

 $=$ $\frac{1}{2}$ (1⁴) -

 $\left(\frac{3}{2}\right)$ 7 basis = cijenvector of $\sigma_{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ X baris = cigennentas ef $\sigma_x = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ Y besis = cijenvectors of $G_y = \begin{pmatrix} 0 & -i \\ 0 & 0 \end{pmatrix}$ Eigenvalues are clarys ± 1 for there matrices. $\frac{1}{\sqrt{2}}$ Recall des Me chose parametrisation follows from: $143 = 193 + 6113$ with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2} + |\beta|^{2} = 1$ monsuelisation venuever one pensemeter. Moreau a global phase is unobservable so one con almoys cidjust $\alpha \in \mathcal{R}$. all in all take $x \in R$, $\beta \in C$ with
 $x = \cos \frac{\theta}{2}$, $\beta = (\sin \frac{\theta}{2}) e^{-\frac{1}{\theta} \theta}$

2) Hamiltonian The energy estervable (Hamiltonian) of a spin 1/2 in a majnetic field is the 2x2 m eh i x $H = -0\frac{1}{2}B.0$ $-\gamma_{2}^{4}(\sqrt{3}\times\sqrt{x} + \sqrt{3}\gamma_{1} + \sqrt{3}e^{2})$ = $-\delta_{z}^{\frac{1}{2}}\begin{pmatrix} 3_{z} & B_{x}-i\delta_{y} \\ B_{x}+i\delta_{y} & -B_{z} \end{pmatrix}$ [the value of of depends on the particle or system and represents a supling strength].

Special casy case: \overrightarrow{B} = (0, 0, \overrightarrow{B}) $\sqrt{2}$ diretion $H = -\gamma \frac{\pi}{2} B_{0} C_{2}$ $\frac{Nclalic}{N}$ $\gamma B_o = \omega_o$ \Rightarrow $\left(\frac{H}{1} = -\frac{\hbar \omega_o}{2} C_z \right)$ Here ω_0 has unit $\begin{bmatrix} S^{-1} \end{bmatrix}$ and contant.
 H " " $\begin{bmatrix} S. S \end{bmatrix} \Rightarrow$ Planct contant. Eigenvelues & cigenvectors; $H=-\frac{\hbar\omega_{0}}{2}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\Rightarrow\begin{pmatrix}H(\hat{1})=-\frac{\hbar\omega_{0}}{2}(\hat{1})\\H(\hat{1})=+\frac{\hbar\omega_{0}}{2}(\hat{1})\end{pmatrix}$ every f + $\frac{\hbar \omega_0}{2}$, 113 "excited state"
Gap f + $\frac{\hbar \omega_0}{2}$, 113 "excited state"

& Bloch sphere illustration: With a constant \vec{B} = (0, 0, B) field in the z direction $24 \frac{3 \cdot \frac{1}{2} \cdot \frac{1}{16}}{100}$ sphere illustration
 $\frac{1}{2}$ // $\frac{2}{16}$ $\frac{4}{16}$
 $\frac{2}{16}$ $\frac{4}{16}$
 $\frac{1}{16}$ $\frac{6$ round state
 $\frac{2}{16}$ $\frac{1}{16}$ $\frac{2}{16}$ $\frac{1}{16}$ $\frac{2}{16}$ $\frac{2}{16}$ $\frac{2}{16}$ $\$ What if is has any general arientation What if is has any general aiertation? obviously the energy spectrum will be De same with eigenvalues : π if is has any general orientation?
by vionaly the energy spectrum will be the
the with eigenvalues.
the wo and $\omega_o = f \parallel \vec{B} \parallel = g \sqrt{B_x^2 + B_y^2 + B_z^2}$. The eigenvectors (or eijenslehe) will be gubit states with $(0,4)$ pointing in the direction of \rightarrow state wil
state wil
131 = m.
1131 = m.

⑰ Interaction of this two level system with photons. Intraction of Mis huo.
Qualitative discussion. $\overline{\mathcal{A}}$ \downarrow $t^{\frac{1}{2}}$, t $+$ - $\frac{100}{2}$, 13 Ground state. · If initialy system is in state ¹⁴³ and we send a photon (a grain of energy) of frequency w = wo knowd to the gap, so we give an y as = as a himed to the go
energy exactly $\frac{1}{2}$ to = to as ne state will flip to IL) the excited state. This is Fix an energy
will flip to
an absorption au absorption proces. · Conversely of initially the state is 11 excited, it can release an energy travetra, in the form of a photon and the system fells in me 2S . This is an rally the
Rease an emission proces .

 $\binom{8}{ }$ 3) Dymannies in constant field: Carmon precenson. We want to solve the equation $\int \frac{dt}{dt} \frac{d}{dt} \nabla_t = H \nabla_t$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and then compute $1\psi_{\epsilon}$) given that
 $1\psi_{o}$) = (cos $\frac{0}{2}$) (1) + (sin $\frac{0}{2}$) e^{ric} (x). We also want to visualize the solution as a function of time on the Bloch sphere. For $H = -\gamma_2^2 \vec{B} \cdot \vec{\sigma}$ with \vec{B} time-independent his is my cesy (time-dependent care)

 $\left(\frac{9}{2} \right)$ Because H is independent of time the following can be explicitly checked by pluffing in ODE : $U_{\epsilon} = \exp\left(-\frac{i}{\hbar}H\right)$ Notice that $U_{t=0} = I - \left(s^{10}\right)$ in the cond Now we address the exponential. By choosing the reference frame appropriately we clips B with Z. So we have lok at the case: $\vec{B} = (0, 0, \vec{B}_0)$ $U_{t} = exp(-i \frac{t}{\hbar} (-1)^{3} \frac{1}{2} \sigma^{2})$ = $\exp\left(i\frac{t}{2}\omega_o\sigma_z\right)$

 $\frac{e^{i\frac{t\omega}{2}}}{e^{-i\frac{t\omega}{2}}}$ (Remark : Me exp of a diagonal matrix is just Me diag matrix with exp on the disperal.) $1\psi_{t}$ = U_{t} 1 ψ_{0}
= $(\cos \frac{\theta}{2})$ U_{t} 17 $+(sin \frac{\theta}{2})e^{i\theta}U_{t}W$ $=(c_{0},\frac{9}{2})e^{-\frac{(1+\omega_{0}}{2}}(1)+(8i\frac{9}{2})e^{-\frac{(1+\omega_{0})}{2}}(1)$ = $e^{i\frac{t\omega_{0}}{2}}(6e^{i\frac{t}{2}})1^{2}+(sin\frac{t}{2})e^{i6}-tan(12))$

(fbbel un observeble phase) This is the solution of the Schnoedinger equation.

 $\left(\nu\right)$ E volution on Black sphere { constant magnfield).
(0,0,3,) = B A^2 . The state precesses around the 2-axis with $\overline{\lambda}$ $\frac{1}{2}\sqrt{\frac{4}{9-\omega_{0}t}}$ the state prece
frequency wo. Period of rotation ; $4 - \omega_{0} T = 4 - 2\pi$ $m = 2 - axis - w/h$
 $\nvoshh = \frac{2v}{w_0}$
 $\frac{2v}{w_0}$ · this is called the Larmor around the 2
cried of rotation
- 25 => {
lannon preconion p and p · Of course of has general rientation the larmon precentar is around B-axis with frequency $\omega_o = \gamma ||\vec{\beta}||$ and period $T = \frac{2\pi}{\gamma \sqrt{3}}$ $\n \frac{2\pi}{\gamma \sqrt{5}}$ E