Magnetic Moments, Spin 1/2. 1 . Magnetic
Phenomenol
Tutroduction Magnetic
Phenomene
Tutroduction Introduction 11 11 Spin 1/2" is physical realization of qubits which avices as the magnetic moment carried by numerou particles (such as electrons, protons, some muclei, pour atoms, ect...). As such it can be manipulated by magnetic fields and thus plays an important role in quantum information processing. \overline{L}_m the next few lectures we introduce the concept of spin 1/2 and its dynamical behevia in magnetic fields . As an application we will see how are can proceed to realize logical quantum gaten such as H (Hadamand)

NOT, CNOT (control not) by Nuber
Mapretic Resonance. The mathematical formalism developped in these mext few lectures is enentially the same for varian "hvo level systems" which are other realisations (natural on man-made (of quantum bits (although the physical interpretation is not in terms of magnetic moments & magnetic fields the math is basicaly similar).

 (2)

2. Magnetic Moments: phenomelogy. Think of a majnet, for example the meedle of a compass. It has a North and a south pôle and the meedle orients itself perellel to the magnetic field (of the easth sex). $\begin{array}{c}\n\begin{array}{ccc}\n\mathcal{N} & \mathcal{N} \\
\hline\n\mathcal{N} & \mathcal{N}\n\end{array}\n\end{array} \implies \qquad \begin{array}{c}\n\mathcal{N} & \mathcal{N} \\
\hline\n\mathcal{N} & \mathcal{N}\n\end{array}$ The majnet is described by a vector M. called the magnetic moment and the energy function that the system minimizer when it nients itself favorably in the direction of 13 is $E\propto -\vec{M} \cdot \vec{B}$ (we do not discuss proportionality constants he

 $\left(\begin{matrix} 4 \end{matrix}\right)$ There are various somen of magnetism that eventually constitute the magnetic moment احد
(-M decribing magretic dipala with ^a Nath pole and a Sarth pole. There magnetic dipole came from orbital Gops Cops
Cops (in atoms, rolids,...) which generate
small magnetic fields, which add up to eventuall small magnetic fields, which add up to eventually contribute to the total Magnetic Moment M. But also per is another somme of mognetism But also seu is another source of te to the total Mapretic Moment M.
also sea is another some of mapret
does not come from orbital current loops
intrinsic to particles such es log_{5} but is intrinsic to particle such as les peux
andreau
- trinsie electrans, pretons, parmer sour -There particles are themselves "microscopic majnets (with a North and a South pole, The total M is eventually given by an addition of there

 \circledS miercescopie intrinsie cartitation. In funamaprets (e.g fridge maprets, mapet of meedle of compan) ; of "low" temperatures $(\sim$ </co "k") ナテァアメ Microsopic \overrightarrow{M} = castributions $0\not\supset\bigcap\limits_{i=1}^n\bigcap\limits_{i=1}^n\bigcap\limits_{i=1}^n$ add up. ぴでなてで . at very high temperature (~ > 1000°K) $\begin{array}{ccccccccccccc} \uparrow & & & & \uparrow & & \uparrow & & \uparrow & & \downarrow & & \uparrow & & \uparrow & & \downarrow & & \uparrow & & \downarrow & & \uparrow & & & & \downarrow & & & \uparrow & & & & \downarrow & & & \uparrow & & & & \downarrow & & & \downarrow & & & \uparrow & & & & \downarrow & & & \downarrow & & & \uparrow & & & & \downarrow & & & \downarrow & & & \uparrow & & & & \downarrow & & & \downarrow & & & \uparrow & & & & \downarrow & &$ \overrightarrow{A} \approx 0 = 7 1 1 1 1 1 1 72 722 temperature introducer disorder and minuscapie contributions cancel at

3) STERN-GERLACH experiment. The Stern-Gerlech experiments put in crédence Mat particles (in Mir experiment electrons of Silver atoms, ...) have an interiorie ma pretic moment which has grantum detarion and can be thought as an anely of polerization of ptoton. We give a rough dercription of the experiment here ; N $Some of
Skewahons$ Inhomogeneous Megnet producing Screen $\vec{B}(t) = (0, 0, \vec{B}(2))$

^⑰ beam of We observe atoms are deviated and split in two beams that fall in two distinct location called here "up" and "down" twe beams Mot
Cled here "y"
Explanation : Ag
electrons (thinker Explanation: Ag atoms have an odd us of electrons (thinkeen) and each election carrie an interinfic mejochic moment. There add up to ۔
ج intrinsie mepetic moment.
produce M for Ag ctomer. We have the every function : $E_{AC} = \tilde{M} \cdot \tilde{B}(t) = -M_{2} B(t)$ $=$ $=$ $\frac{1}{2}$ \frac $\overrightarrow{H} \cdot \overrightarrow{\delta}(t) =$
- $\frac{dE}{dz} = M_{2} \frac{d}{dz} B_{z}(t)$ $\frac{d}{dz}$
 $\frac{d}{dz}$
 $\frac{d}{dz}$ dz \sum_{0}^{∞} say Observing the two blobs up & down on the screen leads is to conclude that My takes two values α $(+1)$ and α (-1) .

 $\left(\begin{matrix} \mathcal{E} \end{matrix}\right)$ Quantum theory. It tunns out Met 14 is an observable described by a 2x2 matrix $C'_{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ with two eigenvelues (+1) & (-1) obtained in the measurement precon. The eigenvectors are $\binom{1}{0}$ = 11) and $\binom{0}{1}$ = 12) (in Dirac motation). $C_2 = (+/1)/1 > (1/1) + (-1)/1 > 1/1$ Remark: Me Stern-Gerlach apparetur is analogan to the analyser-photodector agreeday

One can go forther and proceed with the felloning experiment (analogom to the polerizer - ane lyrer-photodector setting): 1) Screen $A_3 \rightarrow A_3$ analogans to polavi ser preparing s tek $\{\psi\}$ analogous to analyser - phobality measuring two cifemalues P M_X . This leach us to introduce an observable My with again two cifenvalues (+1) & (-1)

but ci je ve tas (+) & (-) corresponding to a decomposition of IV). It tunns ant net $M_{x\propto C_{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $=$ (+1) $|2$ ><+1 + (-1) $|-\rangle$ <-1 min $(1) = (1) + 12$
 $\frac{1}{\sqrt{2}}$ $|T\rangle = \frac{|T\rangle - |\sqrt{2}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{-\sqrt{2}}\right)$ and σ_x $|+\rangle$ = (+1) $|+\rangle$, σ_x $|-\rangle$ = (-1) $|-\rangle$.

 (ι) Sinitaly are can proceed also with a Stern-Gerlach apparatus niented along the y axis which lacds to introduce the chternathe $M_{7} \propto \sigma_{7} = \begin{pmatrix} 0 & -i \\ +i & 0 \end{pmatrix}$ $\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}\left(\frac{1}{2}-\frac{1}{2}\right) }$ Note: There are type of particles with ma pictic moments that can take more than two These are described by matrices (analogous) to Pauli mahian (2x2, 3x3, 4x4, ...). Notation integer = $25 + 1$ with $s = \frac{\hbar l}{l} - i\frac{\hbar l}{m}$ $S=1/2$ $(Spi - 1/2)$ \rightarrow 2×2 matrice 3×3 matrix $S = 1$ $C_{8}p^{1}$ $1)$ \rightarrow 4×4 rebuta $s = 3/2$ (oping/1) ->

 $\left(\begin{matrix} 2 \end{matrix}\right)$ 4) Spin 1/2 : formelism. O In summery "Spiny" pertiele arry am quantum observable as: $\vec{M} = (M_{*}, M_{\gamma}, M_{*}) \propto (\sigma_{x}, \sigma_{y}, \sigma_{z})$ where $\sigma_{x} = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ $\sigma_{y} = \begin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}$ $\sigma_{z} = \begin{pmatrix} 1 & 0 \ 0 & -i \end{pmatrix}$ Eure donot discuss proportionality factor which depends on me system/particle]. · The energy observable " of a majorir moment in a mogretie field or "Hamiltonian" is fiven $\frac{b_{2}}{a_{1}}$ $H = -\gamma \stackrel{3}{5} \stackrel{3}{\sigma}$ = $-\gamma(\beta_x\sigma_x + \beta_y\sigma_y + \beta_z\sigma_z)$.

(units for H are Jonle [5], for $B - \beta$: eld Tesla [T] and $\gamma \sim [5] [\tau^{-1}]$. · The Hamiltonian is the jenerater of the dynamics in the following sense : $|\psi_{\epsilon}\rangle$ = U_{ϵ} $|\psi_{o}\rangle$ T
state at time t
initial state at time t=0 and the unitary V is found from Me Schroedinger equation: \dot{c} to $\frac{d}{dt}U_t$ = HU_t Remark : une also have its de 14, = HIY, Schroedinger equation.

5) Rough intuition for Schroedinger's equation. State of a photon of energy $t \omega$ and momentum $\hbar k$ $(k = \frac{2\pi}{d}, \omega = 2\pi \nu)$
were length frequency In Direc motations $-ixt$
 $1\psi_{t}>=e$ $\pi x>0$ $0⁰$ $\pi y>0$
 $\pi y=0$
 $\pi y=0$
 $\pi y=0$
 $\pi y=0$ in component motation this corresponds to $e^{ict} - ikt \left(cos \theta \right)$ $\frac{N_{0}\omega}{dt} \frac{d}{dt}|\psi_{t}\rangle = -i\omega|\psi_{t}\rangle = -\frac{i}{\hbar} \frac{\dagger}{\hbar} \omega |\psi_{t}\rangle$ => $\frac{1}{dF}$ 14 $\frac{1}{dF}$ = $\frac{t}{dH}$ 14 $\frac{1}{dF}$
energy observable here 1x1 unabris.