CPE|
- -
[ i
Differential Geometry II - Smooth Manifolds
Winter Term 2024 /2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 10 — Solutions

Exercise 1:

(a) Let m: E — M be a smooth vector bundle over a smooth manifold M. Show that =
is a surjective smooth submersion.

(b) Let m: E — M be a smooth vector bundle of rank k over a smooth manifold M.
Suppose that ®: 771 (U) — U x R¥ and ¥: 7=1(V) — V x R* are two smooth local
trivializations of F with U NV # (. Show that the transition function 7: U NV —
GL(k,R) between ® and V¥ is smooth.

(c) Consider the tangent bundle 7: TM — M of a smooth n-manifold M and let
O: 71 (U) - U xR" and ¥: 7 1(V) — V x R™ be the smooth local trivializa-
tions of T'M associated with two smooth charts (U, ¢) and (V, ) for M. Determine
the transition function 7: U NV — GL(n,R) between ¢ and W.

(d) Consider the tangent bundle 7: T'S* — S* of the unit sphere S* C R*. Compute
the transition function associated with the two local trivializations determined by
stereographic coordinates.

(e) Let m: E — M be a smooth vector bundle of rank k over a smooth manifold M.
Suppose that {U,}aea is an open cover of M, and that for each @ € A we are given
a smooth local trivialization ®,: 7= 4(U,) — U, X R* of E. For each a, 3 € A such
that U,NUg # 0, let 7,5: Uy, NUs — GL(k,R) be the transition function between the
smooth local trivializations ®, and ®z. Show that the following identity is satisfied
for all o, 5,v € A:

Tas(P)78y(D) = Tay(p)  for all p € Uy NUsN U, (%)

Solution:

(a) By definition of a smooth vector bundle, 7 is smooth and surjective, so it remains
to check that it is a smooth submersion. Let ¢ € E and set p .= w(q) € M. Again by
definition of a smooth vector bundle, there exists an open neighborhood U of p in M and
a diffeomorphism ®: 771(U) — U x R¥ (assuming that 7: E — M is of rank k) such that
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my 0 ® = 7|1y, where 72 U X R¥ — U is the projection to the first factor, which is a
smooth submersion by [Ezercise Sheet 6, Ezxercise 2(a)|. It follows from [Ezercise Sheet
6, Ezercise 1(a)(i)] and [Exercise Sheet 6, Exercise 5(a)| that 7|1 itself is a smooth
submersion, that is, its differential is surjective at every point of 7=(U), which is an
open neighborhood of ¢ in E. Since ¢ € E was arbitrary, we conclude that 7 is a smooth
submersion.

(b) Consider the standard bases {e;}l_; of R and {E;;};,_, of GL(k,R). For each p €
U NV, denote by a;;(p) € R the (7,7)-th element of the matrix 7(p) € GL(k,R) and
observe that

k
T(p) = Z ;5 (p) Eij.
ij=1
For each j € {1,...,k} we have

k
T(p) e = (alj(p)v e 7O‘kj(p)) = Z%‘(P) €i-

If now for each i € {1,...,k} we denote by m;; the (projection) map
T (U N V) X Rk — R, (q, (Ulj, A ,Ukj)) = Vij,

which is smooth by [Ezercise Sheet 3, FErercise 4(a)], then we obtain

(mijo @ oW ) (p,ej) = 7y (1% (ari(p), - - 7041«1(29))) = ay;(p).

Therefore, each map «a;;: UNV — R, p — a;j(p) is smooth as a composite of smooth
maps. In view of [Ezercise Sheet 2, Ezercise 2], which gives the smooth chart

k k
¢I GL(IC2,R> — RkQ, Z My Eij — Z mij €5
ij=1 ij=1
for GL(k,R), we now deduce readily that the transition function 7: U NV — GL(k,R)
between ® and VU is smooth; indeed, it has a smooth coordinate representation 1)o7 o1
with respect to ¢ and any (fixed) smooth chart ¢ for M around (an arbitrary point)
p € UNV, since its component functions «;; are smooth.

(c) Denote by (z!,...,z") and (2',...,2") the coordinate functions of the smooth coor-
dinate charts (U, @) and (V, ), respectively, and recall that the associated smooth local
trivializations ® and W, respectively, are defined as follows:

O: 7Y U) = U x R¥, o 0 — (p, (vl,...,v"))

ox’ »
and
U Y (V) =V xR, @’ia?gi = (p, (@,...,2"))
p
Since :
O %50
or'|, Oz ¥/ 0xd|
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where

.....

is the Jacobian matrix at p = ¢(p) = ¢(p) of the transition map
woy L p(UNV) = pUNV).

(Recall also that the matrix A, represents the differential d((p o 1/}_1);? with respect to
coordinate bases.) Therefore, the transition function 7 between ® and ¥ is the map

J
7:UNV = GL(,R), p— A, = (%(ﬁ)) :
47

(d) We use the same notation as the one used in [Ezercise Sheet 2, Ezercise 5]. According
to the solution of part (c), the transition function 7: S? \ {N, S} — GL(2,R) between
the two smooth local trivializations of T'S? determined by the stereographic coordinates
(S2\ {N},0) and (S*\ {S},0) is given at every point 4 € $*\ {N, S} by the Jacobian
matrix at p = o(p) = a( ) of the transition map o oo~ '. We saw in [Ezercise Sheet 2,
Exercise 5] that 0 o 571 is given by the formula

(aogl)(a,a):( . ) = (u,v), (W,7) € R\ {(0,0)}.

ﬂ2+v2’u2+v2

Thus, its Jacobian at an arbitrary point (w,?) € R?\ {(0,0)} is the matrix

02— u? —2uv
B B W2+ 02)2 (T2 + 02)2
J(an—l)(u’m _ (U ~U~) (7«12 v )

—2uv u? — 02
(W2 +02)2  (u?+ 02)2

(whose determinant equal to which is clearly non-zero).

_(ﬂ2 +2)2
(e) Fix indices o, 8,7 € A and a point p € U, N Uz N U,. According to Lemma 6.5, for
any v € R¥ we have

(p, Tan (P ) ((I)a © q)';l) p;v)
= (Pao®y') o (Bgo® ") (p,v)
= (®a0 (I)El (P, 75y (p)V)

= (p. Tap(p)78,(D)V),



which implies that
Tap(P)To4(P) = Tar (D)

Since a, 3,7 and p were arbitrary, we obtain ().

Exercise 2 (Smooth vector bundle construction lemma): Let M be a smooth manifold
and let {U,}aca be an open cover of M. Suppose that for each «, § € A we are given a
smooth map 7,5: U, N Us — GL(k,R) such that () is satisfied for all a, 8,7 € A. Show
that there is a smooth vector bundle £ — M of rank k with smooth local trivializations
®,: 7 1(U,) — U, x R* whose transitions functions are the given maps 7,z.

[Hint: Define an appropriate equivalence relation on [] (Ua X ]Rk) and use the vector
bundle chart lemma.]

Solution: We first fix some notation: Set

£ =[] (Ua xR¥);

and for (p,v) € U, x R¥, denote by (p,v), its image in &.
As suggested by the hint, consider now the following relation ~ on &£: two points
(p,v)as, (P, 0")5 € € are equivalent if and only if

p=p and v=T,p(p)- 7V,

in which case we write (p,v)o ~ (p',v")s. Let us check that ~ indeed an equivalence
relation on &:

e Reflexivity: By applying () to a = 8 = v we obtain 7,, = Idgxg. It follows that
v = Taa(p)'l} fOI' a“u (puv) € UCY X Rk? a’nd thus (p7 U)Oé ~ (p7 U)Oé'

e Symmetry: Suppose that (p,v), ~ (p/,v')p, l.e., p = p/ and v = 7,5(p)v'. By
applying (%) to «, 8 and v = a we obtain 75,(p) = (Taﬂ(p))fl. Thus,

/

V' = (Tas(p)) v = Taa(P) - v,
whence (p/,v")s ~ (p, v)a-

o Transitivity: Suppose that (p,v), ~ (p/,v")g and (p’,v")5 ~ (p”,v"),. Then

/ /! "

p=p =p and v =Tu5(p) -V, V' =74,(p) - V"
In particular, we obtain

n (%) "

v = Tag(p)Tsy(P') - 0" = Tar (p) -V,
which shows that (p,v)s ~ (p”,v")s.

Next, set
E=&/~



and denote by [(p,v)s] € F the equivalence class of (p,v), € €. Note that the map
€ — M sending (p,v), to p factors through E, because if (p,v), ~ (p/,v")s, then in
particular p = p’. So, consider the map

m: E—= M, [(p,v)a] = p.
Now, let a be arbitrary and let us verify that

U, : Uy x RF = 771U,
(p,v) = [(p, V)]

is a bijection. For injectivity, suppose that ¥, (p,v) = ¥, (p’,v’). In particular, we obtain
p=7p and v = T, (p)v) = v'. For surjectivity, let [(p/,v")5] € 7~ (U,) be arbitrary. Notice
that p = 7([p/,v']) € U,, and set v = 7,5(p)v’. Then we have (p,v), ~ (p/,v")s, and thus
[(p/,v")s] = VUa(p,v). Hence, ¥, is bijective, as claimed. Finally, with a similar argument
it is straightforward to check that U, ({p} x R¥) = 7~1(p).

By bijectivity we may write ®, = (¥,)~'. To endow the fibers 771(p) with a vector
space structure, let a; be such that p € U,,. We endow 7n~1(p) with the structure of a
k-dimensional real vector space via the bijection 7 (p) = {p} x R* provided by ®,,. We
denote the resulting real vector space by E, = 7~!(p). Since we chose «, at random, we
have to check that the choice does not matter. To this end, let o be arbitrary and take
p € U,. We have to check that ®,|g, is a vector space isomorphism from E, to {p} x R,
So, pick (p,v)a, € Ep, and set v' = 7,4, (p) - v, so that (p,v)q ~ (p,v)qa,. Then

Do ([(p0)ay]) = Pa([(p,0)a]) = (0,7) = () Tara, (P) - 0).

AS Taa,(p) € GL(k,R), we infer that ®,|g, : E, — {p} x R¥ is an isomorphism of real
vector spaces.

Finally, to apply the Vector Bundle Chart Lemma, we have to verify that the ®,’s are
compatible. Let a, 3 be such that U, N Uz # (). Take (p,v) € (U, NUs) x R*. We want
to compute (Cba o @El)(p, v). By construction, we see that @El(p, v) = [(p,v)s]. Now, let
v = 7,5(p) - v, so that (p,v'), ~ (p,v)s. Then we have

(a0 @5") (p,0) = a([(p,v)a]) = (0. 0) = (P, 7ap(P) - ).

Since by hypothesis the maps 7,5: U, N Uz — GL(k,R) are smooth, the Vector Bundle
Chart Lemma implies that £ has a unique topology and smooth structure such that
m: E— M is a smooth vector bundle of rank k, and the ®,’s are its local trivializations,
with transition functions the 7,4’s.

Exercise 3:

(a) Show that the zero section of every smooth vector bundle is smooth.

[Hint: Consider ® o ¢, where ® is a local trivialization.|

(b) Let m: E — M be a smooth vector bundle. Show that if f,g € C*°(M) and if
o,7 € ['(E), then fo+gr € T'(F).

[Hint: Consider ® o (fo 4 g7), where ® is a local trivialization of E.|
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(c) Let E :== M x RF be a product bundle over a topological manifold M. Show that
there is a natural one-to-one correspondence between (continuous) sections of E and
continuous functions from M to R*.

Moreover, if M is a smooth manifold, show that this is a one-to-one correspondence
between smooth sections of £ and smooth functions from M to R*. Deduce that
there is a natural identification between the space C*°(M) and the space of smooth
sections of the trivial line bundle M x R — M.

(d) Let m: E — M be a smooth vector bundle. Show that each element of E is in the
image of a smooth global section of FE.

[Hint: Use Lemma 6.10.]

Solution:

(a) Let p € M and let ®: 771 (U) — U x R* be a smooth local trivialization, where
U is a neighborhood of p. Given ¢ € U, write 0, for the zero element of E, = 7 !(q).
By definition we have ((q) = 0, € E,. Since ®|g,: E;, — {q} x R* is a vector space
isomorphism, we obtain

D(¢(q)) = ®|r,(0g) = Oggpxrr = (q,0).

Hence, ® o (|y = Idy xQgx is smooth by [Ezercise Sheet 3, Exercise 4]. As & is a
diffeomorphism, we infer that (|y is smooth, and as p was arbitrary, we conclude that ¢
is smooth by [Ezercise Sheet 3, Exercise 2].

Remark. By arguing as above (essentially replacing the words “smooth” with “continuous”
and “diffeomorphism” with “homeomorphism”), we can also show that, more generally,
the zero section of a (topological) vector bundle is continuous.

(b) Let p € M and let ®: 7=1(U) — U x R* be a smooth local trivialization, where U
is an open neighborhood of p € M. For ¢ € U, denote by +, the addition and by -, the
scalar multiplication of E,. By definition we have

(fo+97)(q0) = f(q) qo(q) +49(q) -4 T(q) € Ey.

Since ®|g,: E, — {q} x R¥ is a vector space isomorphism, we obtain

Do (fo+g7)(q) = f(@)(Q|g,)(0(a) + 9(0)(®|r,)(T(q) € {a} x R

According to [Ezxercise Sheet 3, Ezxercise 4], showing that the map ®o(fo+ g7) is smooth
is equivalent to checking that its post-composition with both projections pr;: U x R¥ — U
and pry: U x R¥ — R* is smooth. By the above formula we obtain

pry o® o (fo + g7) = 1dy,

so it remains to check post-composition with pr,. To this end, set ¢ := pryo® o ¢ and
7 = pryo® o 7, and note that both of them are smooth functions from U to R¥. The
above formula gives
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Due to the smoothness of the maps involved, this is also smooth. Thus, ® o (fo+ g7)|y is
smooth, and as ¢ is a diffeomorphism, we infer that (fo + ¢7)|y is smooth. Since p € M
was arbitrary, we conclude that fo+ g7 is a smooth global section of E by [Ezercise Sheet
3, Exercise 2(a)].

(c) Consider the projection maps of the given product bundle:
T=my: E=MxRF = M, (p,v) — p,

and
mpe: B =M x R¥ - RF, (p,v) — v.

Note that they are both continuous.
Now, let f: M — R* be a continuous function. Consider the continuous map

op: M — E, os(p) = (p, f(p))

and observe that
(mooy)(p) = p =1Idu(p),

so o is a global section of F. Conversely, if o: M — E = M x R¥ is a global section of
E, then f, := mgr 0 0: M — R¥ is a continuous map. Finally, it is easy to check that the
assignments f +— oy and o — f, just described are inverse to each other; in other words,
we have 0 = oy, and f = f,,.

If M is a smooth manifold, and hence 7: E = M x R* — M is a smooth product
bundle of rank k over M, then the above construction yields a one-to-one correspondence
between smooth sections of £ and smooth functions from M to R¥, taking into account
FEzercise 3(e) and FEzercise 4 from FEzercise Sheet 3. In particular, if k& = 1, then there
is a natural identification between the space C*°(M) of smooth functions on M and the
space of smooth sections of the trivial smooth line bundle M x R — M.

(d) Fix ¢ € E and set p == w(q) € M. Consider the closed subset A := {p} C M and the
section
c:A—=FE p—qck,

of E|4 = E,. We claim that o extends to a smooth local section of £ over some open
neighborhood of p. Granting this claim for a moment, by Lemma 6.10 there exists a
smooth global section ¢ of E such that o|4 = o; in particular, we also have o(p) = o(p) =
¢, which shows that ¢ € E lies in the image of the smooth global section ¢ € I'(E).

We now prove the above claim. By definition of a smooth vector bundle, there exists
an open neighborhood U of p in M and a diffeomorphism ®: 7=*(U) — U x R¥ such that

mypo® = 77"71-—1(U)7

where 77 : U x R¥ — U is the projection to the first factor. Since ¢ € 7=(U), its image
under @ is a pair (p,v,) € U x R* for some vector v, € R*. Consider now the map

t:U—=UxRF z (2,0,),
which is smooth by[Ezercise Sheet 3, Ezercise 4(b)], as well as the composite map

s=0"lot: U — a1 U), v+ O (z,v,),
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which is also smooth by [Ezercise Sheet 3, Exercise 3(e)], and satisfies

Moreover, we have

(mos)(z)=((ro® ") ot)(z) = (ryot)(z) =x=Idy(z) for every z € U.

Therefore, s: U — FE is a smooth section of E over U and may also be regarded as a
smooth extension of o: A — E. This proves the claim and completes the proof of (d).

Remark.

(1)

(2)

Let m: E'— M be a smooth vector bundle. According to Ezercise 3, the set I'(E) of
smooth global sections of F is an infinite-dimensional R-vector space and a module
over the ring C*°(M).

Using Ezercise 5(a) and Proposition 0.14 we give below another, somewhat more
direct, solution to Ezercise 3(d):

Fix ¢ € F and set p := 7(q) € M. Consider the closed subset A := {p} C M and the
section

c:A—E p—q€ckE,
of E|s = E,. There exists a smooth local trivialization ®: 7=(U) — U x R¥ of E

over an open neighborhood U of p, and hence a smooth local frame (o4, ..., 0%) for
E over U (associated with ®) by Ezercise 5(a). We may thus write

o(p) = Y v'oilp) € E,

for some uniquely determined constants v* € R, 1 < i < k. We now define the map

k
s:U—E, r— Zviai(as) € E,.

=1

Note that s is a rough section of 7, since (7 o s)(z) = z = Idy(z), and it is actually
smooth by Proposition 6.14, since its component functions with respect to the smooth
local frame (o7, ...,0}) are constant (namely, the constants v € R). Since we clearly
have s(p) = o(p), the section s is a smooth extension of o: A — E over U. Thus, the
statement follows readily from Lemma 6.10 (as above).

Exercise 4 (Completion of smooth local frames for smooth vector bundles): Let m: E —
M be a smooth vector bundle of rank k£ over a smooth manifold M. Prove the following
assertions:

(a)

If (o1,...,0m,) is a linearly independent m-tuple of smooth local sections of E over
an open subset U C M, where 1 < m < k, then for each p € U there exist smooth
sections o, 11, . .., 0 of E defined on some neighborhood V' of p such that (o4, ..., 0%)
is a smooth local frame for £ over U NV



(b) If (vy,...,v,) is a linearly independent m-tuple of elements of the fiber E, for some
p € M, where 1 < m < k, then there exists a smooth local frame (oy,...,0%) for E
over some neighborhood of p such that o;(p) = v; for every 1 <i < m.

(c) If A C M is a closed subset and if (7y,...,7x) is a linearly independent k-tuple of
sections of F|4 which are smooth in the sense described in Lemma 6.10, then there
exists a smooth local frame (071, ..., 0%) for E over some neighborhood of A such that
oila = 1; for every 1 < i < k.

[Hint: Use Lemma 6.10.]

Solution:

(a) Let Vy be an open neighborhood of p in M such that there exists a smooth local
trivialization ®: 77 (V) — Vo x R* of E over Vy. As ®(01(p)), ..., ®(0n(p)) € {p} x R*
are linearily independent, there are vectors vy, 1, ..., v, € R* such that the set

{Cb(al(p)), . ,CD(am(p)), (P, Vims1)s -+, (P, vk)}

is a basis of {p} x R*. For each m < i < k, define o;: Vj — E by 0;(q) = ®7!(q,v;) and
note that o; is smooth, as both g — (g, v;) and ®~! are so. Now, consider the function

d: Vo = R, g+ det (pr2 (@(Uﬂg))), U o) o <Cb(ak(q))>> :

We have d(p) # 0, since by construction the set

{pr2 (@(al(p))), ey DIy (CID (Uk(p))> }

is a basis of R*. As d is continuous, there exists a neighborhood V' of p such that d|y is
nowhere zero. Hence, (01, ...,0%) is a smooth local frame for E over U N V.

(b) We may complete (v1,...,v,,) to a basis (vi,...,v;) of E, 2 R*. Let U be an open
neighborhood of p € M such that there exists a smooth local trivialization ®: 7=1(U) —
U x R¥ of E over U. As in part (a), we define o;: U — E by 0(q) := ® (¢, v;), and
again by continuity of the determinant, this gives a smooth local frame on some open
neighborhood V' C U of p.

(c) By hypothesis and by Lemma 6.10 (applied for U = M), for each i € {1,...,k} there
exists a smooth global section 7; of E such that 7;|4 = ;. Therefore, for every p € A the
set {7'1 (p),...,mk(p)} is a basis of E,, and by continuity of the determinant there exists
an open neighborhood U, of p in M such that {7'1 (q),...,7k(q)} is a basis of E, for each
q € Up. Thus, U = Up6 4 Up is an open subset of M containing A and additionally for
every x € U the set {Tl(a:), ..., Tk(x)} is a basis of the fiber E,; in other words, (71, ..., %)
is a smooth local frame for F over the open neighborhood U of A.

Exercise 5 (Correspondence between smooth local frames and smooth local trivializa-
tions): Let m: E — M be a smooth vector bundle of rank k& over a smooth n-manifold
M.



(a) Given a smooth local trivialization ®: 7=1(U) — U x R¥ of E over U, construct a
smooth local frame (0;) for E over U. (We say that the smooth local frame (o;) is
associated with the smooth local trivialization ®.)

(b) Show that every smooth local frame (o;) for E is associated with a smooth local
trivialization ® of E.

[Hint: Define the inverse of ® using (o;) and show that it is a bijective local diffeo-
morphism to conclude.]

(c) Deduce that E is smoothly trivial if and only if it admits a smooth global frame.
Interpret this result in case that F is a smooth line bundle, i.e., when k = 1.

(d) Let (U, ) be a smooth coordinate chart for M with coordinate functions (x?) and
assume that there exists a smooth local frame (o;) for E over U. Consider the map

p: 1N (U) = 9(U) x RY, v'oi(p) = (2'(p), ..., 2" (p),v", ... 0F).
Show that (7~ '(U), ) is a smooth coordinate chart for E.

Solution:

(a) Let e1,...,e; be the standard basis of R¥. As in Erercise 4(b), the smooth local
sections 0;: U — E defined by 0;(q) = ® (g, e;) determine a smooth local frame for F
over U.

(b) Let (0;) be a smooth local frame for E over an open subset U of M. Consider the
map
U: U xR = 774 U), ¥(g,v) =01 go1(q) + ... + vk g ok(q) € E,.

It is straightforward to check that 7o W = pr;.
Let us first show that W is bijective. To prove its injectivity, suppose that ¥(q,v) =
U(q',v"). By applying 7 we see that ¢ = ¢/, and thus

V1 q01(q) .o Vg ok(q) = V1 g ou(q) + .. AV g ok(q)

inside E,. As 01(q),...,0k(q) is a basis of E,, we infer that v = v/, and thus we establish
the injectivity of U. Now, to prove the surjectivity of ¥, let e € 7~1(U) be arbitrary. Set
g =m(e) and let v = (vy,...,v;) be such that

€=U ‘q O'l(q> ++'Uk ‘q O'k(Q)

inside E,. Then e = ¥(q,v), so we are done.

It remains to check that W is a local diffeomorphism. Let p € U and let ®: 7=1(V) —
V x R¥ be a smooth local trivialization of E, where V is an open neighborhood of p
contained in U. Since @ is a diffeomorphism, if we could show that ® o V| g is a
diffeomorphism from V x R to itself, then we would infer that W|y, g is a diffeomorphism
from V x R¥ to its image 7~ 1(V).

Since ® o o4y : V — V x R* is smooth and since post-composition with pr; equals
Idy, we see that it is of the form

b ooilv(a) = (a,(0}(a), .05 (a)))
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for some smooth functions o7,...,0F: V' — R. If we denote by A: V' — Mat(k x k,R)

the function sending ¢ to the matrix (o7 (q)), <ji<k (where j is the index for the lines and

i is the index for the columns of the matrix), then A is smooth, as every component is
smooth. Furthermore, the image of A lies in GL(k,R) because o;(q), ..., 0;(q) is a basis
of R* by assumption. Now, by construction of W, it is straightforward to check that for

any (q,v) € V x R¥ we have
(®oW)(q,v) = (q,A(q) - v) €V x RE.

This is clearly smooth, as A is smooth. We then also see that (® o U|y g+ ) "' sends (q,v)
to (¢, A(g)™'-v), which is smooth as well (we use here that the map GL(k, R) — GL(k,R)
sending a matrix to its inverse is smooth). Therefore, ¥|y gr: V x R* — 771(V) is a
diffeomorphism, as desired.

In conclusion, ¥ is a bijective local diffeomorphism, and hence a global diffeomor-
phism by [Ezercise Sheet 6, Ezercise 4(f)]. It is now straightforward to check that
® = Ul 771 (U) — U x RF is a smooth local trivialization of E over U such that
the given smooth local frame (o;) is associated with ®.

(c) Recall that E is smoothly trivial if and only if it admits a smooth global trivialization.
Thus, F is smoothly trivial if and only if it admits a smooth global frame by (a) and (b).

Assume now that E is a smooth vector bundle of rank £k = 1 over M. Then F is
smoothly trivial if and only if it admits a smooth global frame. Such a frame consists of
a single smooth global section o: M — E with the property that for each p € M, the
element o(p) € E, is a basis of the 1-dimensional R-vector space E,, and hence o(p) # 0.
Conversely, every smooth global section o: M — E of E such that o(p) € E, \ {0}
determines a smooth global frame for £. In conclusion, the smooth line bundle E — M
is smoothly trivial if and only if it admits a nowhere vanishing smooth global section.

(d) By part (b), there exists a smooth local trivialization ®: 7=%(U) — U x R* such
that (o) is associated with ®. In particular, we have (@ o ai)(q) = (q,€;) for all ¢ € U,
where ey, ..., ey is the standard basis of R*. Now let ¢: 771(U) — (U) x R* be the
composition ¢ = (¢ x Idgk)o®, where o x Idgr: U xRF — ¢(U) x R¥ is defined by applying
¢ on U and Idgr on R¥. Note that 1 is a diffeomorphism as both ® and ¢ x Idg« are
diffeomorphisms. To see how 1 acts on the points of 771(U), let e € 7~ (U) be arbitrary,
and set ¢ = w(e) € U. As 01(q),...,0k(q) is a basis of E,, there exist real numbers
v, ..., v" such that e = vioy(q). As (®o0;)(q) = (g,€;), we obtain ®(e) = (g, (v*)),
so ¢(e) = (¢(g), (v')). Therefore, » = . As 1 is a diffeomorphism, this proves that
7 H(U), ¢) is a smooth coordinate chart for E.

Remark. By arguing as in the solution to Fzercise 3(a)(b) — essentially by replacing the
words “smooth” with “continuous” and “diffeomorphism” with “homeomorphism” — one
can also show that, more generally, there is a correspondence between (continuous) local
frames and (continuous) local trivializations for any (topological) vector bundle. This
allows one to prove the topological case of Proposition 6.1 with an essentially identical
argument to the smooth case (which was treated in the lecture).
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Exercise 6 (Uniqueness of the smooth structure on TM): Let M be a smooth n-manifold.
Show that the topology and smooth structure on the tangent bundle T'M constructed in
Proposition 3.12 are the unique ones with respect to which 7: "M — M is a smooth vec-
tor bundle with the given vector space structure on the fibers, and such that all coordinate
vector fields are smooth local sections.

[Hint: Use Ezercise 5(d).]

Solution: Denote by (T'M)" a smooth manifold with underlying set TM = | | ,, T, M,
but with possibly different topology and smooth structure than the usual tangent bundle
TM, such that the map 7': (TTM)" — M, sending v € T,M to p € M, gives (I'M)' the
structure of a smooth vector bundle over M such that all the coordinate vector fields are
smooth local sections. (Note that, as set-theoretic maps, 7 and 7’ are the same, but we
denote them differently to emphasize that their source may have different topology and

smooth structure.) By assumption, if (U7 (z!,... ,x”)) is a smooth chart for M, then the
maps
0. U— (TM)
oxt’
= 0
P 4
oxt »
are smooth local sections of 7/. Since for every p € U the vectors % ey ain form a
P " p

basis of T, M, it follows that ( 821.

p) is a smooth local frame for (7'M ), and according
1<i<n

to Ezercise 5(d), the map

is a smooth chart for (TTM). But the same holds for T'M (as we saw in the proof of
Proposition 3.12). It follows that the identity map TM — (T'M)" is a diffeomorphism.
In particular, it is a homeomorphism, and thus also the topology agrees.

Remark. We somewhat used in FExercise 6 that the smooth structure actually determines
the topology. That is, we have the following:

Let M be a set and let 7 and 7’ be two topologies on M, both endowing it with
the structure of a topological manifold. Supposed that A is an atlas for both topologies,
such that both (M, T,.A) and (M, T’, A) are smooth manifolds. Then 7 = 7’. Indeed,
the identity Idy: (M, T, A) — (M,T’,.A) is smooth, as we have the same atlas on both
sides; in particular, it is continuous, so 7/ C 7. A symmetric argument also shows that
the reverse inclusion holds. Therefore, 7 = 7, as claimed.
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