

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 10 – Solutions

Exercise 1:

- (a) Let $\pi: E \to M$ be a smooth vector bundle over a smooth manifold M. Show that π is a surjective smooth submersion.
- (b) Let $\pi: E \to M$ be a smooth vector bundle of rank k over a smooth manifold M. Suppose that $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ and $\Psi: \pi^{-1}(V) \to V \times \mathbb{R}^k$ are two smooth local trivializations of E with $U \cap V \neq \emptyset$. Show that the transition function $\tau: U \cap V \to \operatorname{GL}(k, \mathbb{R})$ between Φ and Ψ is smooth.
- (c) Consider the tangent bundle $\pi: TM \to M$ of a smooth *n*-manifold M and let $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^n$ and $\Psi: \pi^{-1}(V) \to V \times \mathbb{R}^n$ be the smooth local trivializations of TM associated with two smooth charts (U, φ) and (V, ψ) for M. Determine the transition function $\tau: U \cap V \to \operatorname{GL}(n, \mathbb{R})$ between Φ and Ψ .
- (d) Consider the tangent bundle $\pi: T\mathbb{S}^2 \to \mathbb{S}^2$ of the unit sphere $\mathbb{S}^2 \subseteq \mathbb{R}^3$. Compute the transition function associated with the two local trivializations determined by stereographic coordinates.
- (e) Let $\pi: E \to M$ be a smooth vector bundle of rank k over a smooth manifold M. Suppose that $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of M, and that for each $\alpha \in A$ we are given a smooth local trivialization $\Phi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ of E. For each $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, let $\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$ be the transition function between the smooth local trivializations Φ_{α} and Φ_{β} . Show that the following identity is satisfied for all $\alpha, \beta, \gamma \in A$:

$$\tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p) = \tau_{\alpha\gamma}(p) \quad \text{for all } p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}.$$
 (*)

Solution:

(a) By definition of a smooth vector bundle, π is smooth and surjective, so it remains to check that it is a smooth submersion. Let $q \in E$ and set $p := \pi(q) \in M$. Again by definition of a smooth vector bundle, there exists an open neighborhood U of p in M and a diffeomorphism $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ (assuming that $\pi: E \to M$ is of rank k) such that $\pi_U \circ \Phi = \pi|_{\pi^{-1}(U)}$, where $\pi_U \colon U \times \mathbb{R}^k \to U$ is the projection to the first factor, which is a smooth submersion by [Exercise Sheet 6, Exercise 2(a)]. It follows from [Exercise Sheet 6, Exercise 1(a)(i)] and [Exercise Sheet 6, Exercise 5(a)] that $\pi|_{\pi^{-1}(U)}$ itself is a smooth submersion, that is, its differential is surjective at every point of $\pi^{-1}(U)$, which is an open neighborhood of q in E. Since $q \in E$ was arbitrary, we conclude that π is a smooth submersion.

(b) Consider the standard bases $\{e_i\}_{i=1}^k$ of \mathbb{R}^k and $\{E_{ij}\}_{i,j=1}^k$ of $\operatorname{GL}(k,\mathbb{R})$. For each $p \in U \cap V$, denote by $\alpha_{ij}(p) \in \mathbb{R}$ the (i, j)-th element of the matrix $\tau(p) \in \operatorname{GL}(k,\mathbb{R})$ and observe that

$$\tau(p) = \sum_{i,j=1}^{k} \alpha_{ij}(p) E_{ij}.$$

For each $j \in \{1, \ldots, k\}$ we have

$$\tau(p) \cdot e_j = \left(\alpha_{1j}(p), \dots, \alpha_{kj}(p)\right) = \sum_{i=1}^k \alpha_{ij}(p) e_i.$$

If now for each $i \in \{1, \ldots, k\}$ we denote by π_{ij} the (projection) map

$$\pi_{ij} \colon (U \cap V) \times \mathbb{R}^k \to \mathbb{R}, \ (q, (v_{1j}, \dots, v_{kj})) \mapsto v_{ij}$$

which is smooth by [*Exercise Sheet 3, Exercise* 4(a)], then we obtain

$$(\pi_{ij} \circ \Phi \circ \Psi^{-1})(p, e_j) = \pi_{ij} \Big(p, \big(\alpha_{1j}(p), \dots, \alpha_{kj}(p) \big) \Big) = \alpha_{ij}(p).$$

Therefore, each map $\alpha_{ij} \colon U \cap V \to \mathbb{R}$, $p \mapsto \alpha_{ij}(p)$ is smooth as a composite of smooth maps. In view of *[Exercise Sheet 2, Exercise 2]*, which gives the smooth chart

$$\psi \colon \operatorname{GL}(k^2, \mathbb{R}) \to \mathbb{R}^{k^2}, \ \sum_{i,j=1}^k m_{ij} E_{ij} \mapsto \sum_{i,j=1}^k m_{ij} \epsilon_{ij}$$

for $\operatorname{GL}(k,\mathbb{R})$, we now deduce readily that the transition function $\tau: U \cap V \to \operatorname{GL}(k,\mathbb{R})$ between Φ and Ψ is smooth; indeed, it has a smooth coordinate representation $\psi \circ \tau \circ \varphi^{-1}$ with respect to ψ and any (fixed) smooth chart φ for M around (an arbitrary point) $p \in U \cap V$, since its component functions α_{ij} are smooth.

(c) Denote by (x^1, \ldots, x^n) and $(\tilde{x}^1, \ldots, \tilde{x}^n)$ the coordinate functions of the smooth coordinate charts (U, φ) and (V, ψ) , respectively, and recall that the associated smooth local trivializations Φ and Ψ , respectively, are defined as follows:

$$\Phi \colon \pi^{-1}(U) \to U \times \mathbb{R}^k, \ v^i \frac{\partial}{\partial x^i} \bigg|_p \mapsto \left(p, (v^1, \dots, v^n) \right)$$

and

$$\Psi \colon \pi^{-1}(V) \to V \times \mathbb{R}^k, \ \widetilde{v}^i \frac{\partial}{\partial \widetilde{x}^i} \bigg|_p \mapsto \left(p, (\widetilde{v}^1, \dots, \widetilde{v}^n) \right).$$

Since

$$\frac{\partial}{\partial \widetilde{x}^i}\Big|_p = \frac{\partial x^j}{\partial \widetilde{x}^i} (\widehat{p}) \frac{\partial}{\partial x^j}\Big|_p,$$

we have

$$(\Phi \circ \Psi^{-1})(p, (v^1, \dots, v^n)) = \Phi\left(v^i \frac{\partial}{\partial \widetilde{x}^i} \Big|_p \right) = \Phi\left(\left(v^i \frac{\partial x^j}{\partial \widetilde{x}^i} (\widehat{p}) \right) \frac{\partial}{\partial x^j} \Big|_p \right)$$

$$= \left(p, \left(v^i \frac{\partial x^1}{\partial \widetilde{x}^i} (\widehat{p}), \dots, v^i \frac{\partial x^n}{\partial \widetilde{x}^i} (\widehat{p}) \right) \right)$$

$$= \left(p, A_p \cdot (v^1, \dots, v^n)^T \right),$$

where

$$A_p \coloneqq \left(\frac{\partial x^j}{\partial \tilde{x}^i}(\hat{p})\right)_{i,j=1,\dots,n} \in \mathrm{GL}(n,\mathbb{R})$$

is the Jacobian matrix at $\widehat{p}=\varphi(p)=\psi(p)$ of the transition map

$$\varphi \circ \psi^{-1} \colon \psi(U \cap V) \to \varphi(U \cap V).$$

(Recall also that the matrix A_p represents the differential $d(\varphi \circ \psi^{-1})_{\hat{p}}$ with respect to coordinate bases.) Therefore, the transition function τ between Φ and Ψ is the map

$$\tau: U \cap V \to \operatorname{GL}(n, \mathbb{R}), \ p \mapsto A_p = \left(\frac{\partial x^j}{\partial \widetilde{x}^i}(\widehat{p})\right)_{i,j}$$

(d) We use the same notation as the one used in [*Exercise Sheet* 2, *Exercise* 5]. According to the solution of part (c), the transition function $\tau : \mathbb{S}^2 \setminus \{N, S\} \to \operatorname{GL}(2, \mathbb{R})$ between the two smooth local trivializations of $T\mathbb{S}^2$ determined by the stereographic coordinates $(\mathbb{S}^2 \setminus \{N\}, \sigma)$ and $(\mathbb{S}^2 \setminus \{S\}, \widetilde{\sigma})$ is given at every point $p \in \mathbb{S}^2 \setminus \{N, S\}$ by the Jacobian matrix at $\widehat{p} = \sigma(p) = \widetilde{\sigma}(p)$ of the transition map $\sigma \circ \widetilde{\sigma}^{-1}$. We saw in [*Exercise Sheet* 2, *Exercise* 5] that $\sigma \circ \widetilde{\sigma}^{-1}$ is given by the formula

$$(\sigma \circ \widetilde{\sigma}^{-1})(\widetilde{u}, \widetilde{v}) = \left(\frac{\widetilde{u}}{\widetilde{u}^2 + \widetilde{v}^2}, \frac{\widetilde{v}}{\widetilde{u}^2 + \widetilde{v}^2}\right) = (u, v), \ (\widetilde{u}, \widetilde{v}) \in \mathbb{R}^2 \setminus \{(0, 0)\}$$

Thus, its Jacobian at an arbitrary point $(\widetilde{u}, \widetilde{v}) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ is the matrix

$$J(\sigma \circ \widetilde{\sigma}^{-1})(\widetilde{u}, \widetilde{v}) = \begin{pmatrix} \frac{\widetilde{v}^2 - \widetilde{u}^2}{(\widetilde{u}^2 + \widetilde{v}^2)^2} & \frac{-2\widetilde{u}\widetilde{v}}{(\widetilde{u}^2 + \widetilde{v}^2)^2} \\ \frac{-2\widetilde{u}\widetilde{v}}{(\widetilde{u}^2 + \widetilde{v}^2)^2} & \frac{\widetilde{u}^2 - \widetilde{v}^2}{(\widetilde{u}^2 + \widetilde{v}^2)^2} \end{pmatrix}$$

(whose determinant equal to $-\frac{1}{(\widetilde{u}^2 + \widetilde{v}^2)^2}$, which is clearly non-zero).

(e) Fix indices $\alpha, \beta, \gamma \in A$ and a point $p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. According to Lemma 6.5, for any $v \in \mathbb{R}^k$ we have

$$\begin{aligned} \left(p, \tau_{\alpha\gamma}(p)v\right) &= \left(\Phi_{\alpha} \circ \Phi_{\gamma}^{-1}\right)(p, v) \\ &= \left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right) \circ \left(\Phi_{\beta} \circ \Phi_{\gamma}^{-1}\right)(p, v) \\ &= \left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)\left(p, \tau_{\beta\gamma}(p)v\right) \\ &= \left(p, \tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p)v\right), \end{aligned}$$

which implies that

$$\tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p) = \tau_{\alpha\gamma}(p)$$

Since α, β, γ and p were arbitrary, we obtain (\star) .

Exercise 2 (Smooth vector bundle construction lemma): Let M be a smooth manifold and let $\{U_{\alpha}\}_{\alpha \in A}$ be an open cover of M. Suppose that for each $\alpha, \beta \in A$ we are given a smooth map $\tau_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$ such that (\star) is satisfied for all $\alpha, \beta, \gamma \in A$. Show that there is a smooth vector bundle $E \to M$ of rank k with smooth local trivializations $\Phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ whose transitions functions are the given maps $\tau_{\alpha\beta}$.

[Hint: Define an appropriate equivalence relation on $\coprod (U_{\alpha} \times \mathbb{R}^k)$ and use the vector bundle chart lemma.]

Solution: We first fix some notation: Set

$$\mathcal{E} \coloneqq \coprod \left(U_{\alpha} \times \mathbb{R}^k \right);$$

and for $(p, v) \in U_{\alpha} \times \mathbb{R}^k$, denote by $(p, v)_{\alpha}$ its image in \mathcal{E} .

As suggested by the hint, consider now the following relation \sim on \mathcal{E} : two points $(p, v)_{\alpha}, (p', v')_{\beta} \in \mathcal{E}$ are equivalent if and only if

$$p = p'$$
 and $v = \tau_{\alpha\beta}(p) \cdot v'$,

in which case we write $(p, v)_{\alpha} \sim (p', v')_{\beta}$. Let us check that \sim indeed an equivalence relation on \mathcal{E} :

- Reflexivity: By applying (\star) to $\alpha = \beta = \gamma$ we obtain $\tau_{\alpha\alpha} \equiv \mathrm{Id}_{k\times k}$. It follows that $v = \tau_{\alpha\alpha}(p)v$ for all $(p, v) \in U_{\alpha} \times \mathbb{R}^k$, and thus $(p, v)_{\alpha} \sim (p, v)_{\alpha}$.
- Symmetry: Suppose that $(p, v)_{\alpha} \sim (p', v')_{\beta}$, i.e., p = p' and $v = \tau_{\alpha\beta}(p)v'$. By applying (\star) to α, β and $\gamma = \alpha$ we obtain $\tau_{\beta\alpha}(p) = (\tau_{\alpha\beta}(p))^{-1}$. Thus,

$$v' = (\tau_{\alpha\beta}(p))^{-1} \cdot v = \tau_{\beta\alpha}(p') \cdot v_{\beta\alpha}(p') \cdot v$$

whence $(p', v')_{\beta} \sim (p, v)_{\alpha}$.

• Transitivity: Suppose that $(p, v)_{\alpha} \sim (p', v')_{\beta}$ and $(p', v')_{\beta} \sim (p'', v'')_{\gamma}$. Then

$$p = p' = p''$$
 and $v = \tau_{\alpha\beta}(p) \cdot v', v' = \tau_{\beta\gamma}(p') \cdot v''$

In particular, we obtain

$$v = \tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p') \cdot v'' \stackrel{(\star)}{=} \tau_{\alpha\gamma}(p) \cdot v'',$$

which shows that $(p, v)_{\alpha} \sim (p'', v'')_{\beta}$.

Next, set

$$E \coloneqq \mathcal{E} / \sim$$

and denote by $[(p, v)_{\alpha}] \in E$ the equivalence class of $(p, v)_{\alpha} \in \mathcal{E}$. Note that the map $\mathcal{E} \to M$ sending $(p, v)_{\alpha}$ to p factors through E, because if $(p, v)_{\alpha} \sim (p', v')_{\beta}$, then in particular p = p'. So, consider the map

$$\pi \colon E \to M, \ [(p,v)_{\alpha}] \mapsto p$$

Now, let α be arbitrary and let us verify that

$$\Psi_{\alpha} \colon U_{\alpha} \times \mathbb{R}^{k} \to \pi^{-1}(U_{\alpha})$$
$$(p, v) \mapsto [(p, v)_{\alpha}]$$

is a bijection. For injectivity, suppose that $\Psi_{\alpha}(p, v) = \Psi_{\alpha}(p', v')$. In particular, we obtain p = p' and $v = \tau_{\alpha\alpha}(p)v' = v'$. For surjectivity, let $[(p', v')_{\beta}] \in \pi^{-1}(U_{\alpha})$ be arbitrary. Notice that $p \coloneqq \pi([p', v']) \in U_{\alpha}$, and set $v = \tau_{\alpha\beta}(p)v'$. Then we have $(p, v)_{\alpha} \sim (p', v')_{\beta}$, and thus $[(p', v')_{\beta}] = \Psi_{\alpha}(p, v)$. Hence, Ψ_{α} is bijective, as claimed. Finally, with a similar argument it is straightforward to check that $\Psi_{\alpha}(\{p\} \times \mathbb{R}^k) = \pi^{-1}(p)$.

By bijectivity we may write $\Phi_{\alpha} = (\Psi_{\alpha})^{-1}$. To endow the fibers $\pi^{-1}(p)$ with a vector space structure, let α_p be such that $p \in U_{\alpha_p}$. We endow $\pi^{-1}(p)$ with the structure of a k-dimensional real vector space via the bijection $\pi^{-1}(p) \cong \{p\} \times \mathbb{R}^k$ provided by Φ_{α_p} . We denote the resulting real vector space by $E_p = \pi^{-1}(p)$. Since we chose α_p at random, we have to check that the choice does not matter. To this end, let α be arbitrary and take $p \in U_{\alpha}$. We have to check that $\Phi_{\alpha}|_{E_p}$ is a vector space isomorphism from E_p to $\{p\} \times \mathbb{R}^k$. So, pick $(p, v)_{\alpha_p} \in E_p$, and set $v' = \tau_{\alpha,\alpha_p}(p) \cdot v$, so that $(p, v')_{\alpha} \sim (p, v)_{\alpha_p}$. Then

$$\Phi_{\alpha}\big([(p,v)_{\alpha_p}]\big) = \Phi_{\alpha}\big([(p,v')_{\alpha}]\big) = (p,v') = \big(p,\tau_{\alpha,\alpha_p}(p)\cdot v\big).$$

As $\tau_{\alpha,\alpha_p}(p) \in \mathrm{GL}(k,\mathbb{R})$, we infer that $\Phi_{\alpha}|_{E_p} : E_p \to \{p\} \times \mathbb{R}^k$ is an isomorphism of real vector spaces.

Finally, to apply the Vector Bundle Chart Lemma, we have to verify that the Φ_{α} 's are compatible. Let α, β be such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Take $(p, v) \in (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{k}$. We want to compute $(\Phi_{\alpha} \circ \Phi_{\beta}^{-1})(p, v)$. By construction, we see that $\Phi_{\beta}^{-1}(p, v) = [(p, v)_{\beta}]$. Now, let $v' = \tau_{\alpha\beta}(p) \cdot v$, so that $(p, v')_{\alpha} \sim (p, v)_{\beta}$. Then we have

$$\left(\Phi_{\alpha} \circ \Phi_{\beta}^{-1}\right)(p,v) = \Phi_{\alpha}\left(\left[(p,v')_{\alpha}\right]\right) = (p,v') = \left(p,\tau_{\alpha\beta}(p)\cdot v\right).$$

Since by hypothesis the maps $\tau_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$ are smooth, the Vector Bundle Chart Lemma implies that E has a unique topology and smooth structure such that $\pi \colon E \to M$ is a smooth vector bundle of rank k, and the Φ_{α} 's are its local trivializations, with transition functions the $\tau_{\alpha\beta}$'s.

Exercise 3:

(a) Show that the zero section of every smooth vector bundle is smooth.

[Hint: Consider $\Phi \circ \zeta$, where Φ is a local trivialization.]

(b) Let $\pi: E \to M$ be a smooth vector bundle. Show that if $f, g \in C^{\infty}(M)$ and if $\sigma, \tau \in \Gamma(E)$, then $f\sigma + g\tau \in \Gamma(E)$. [Hint: Consider $\Phi \circ (f\sigma + g\tau)$, where Φ is a local trivialization of E.] (c) Let $E := M \times \mathbb{R}^k$ be a product bundle over a topological manifold M. Show that there is a natural one-to-one correspondence between (continuous) sections of E and continuous functions from M to \mathbb{R}^k .

Moreover, if M is a smooth manifold, show that this is a one-to-one correspondence between smooth sections of E and smooth functions from M to \mathbb{R}^k . Deduce that there is a natural identification between the space $C^{\infty}(M)$ and the space of smooth sections of the trivial line bundle $M \times \mathbb{R} \to M$.

(d) Let $\pi: E \to M$ be a smooth vector bundle. Show that each element of E is in the image of a smooth global section of E.

[Hint: Use Lemma 6.10.]

Solution:

(a) Let $p \in M$ and let $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ be a smooth local trivialization, where U is a neighborhood of p. Given $q \in U$, write 0_q for the zero element of $E_q = \pi^{-1}(q)$. By definition we have $\zeta(q) = 0_q \in E_q$. Since $\Phi|_{E_q}: E_q \to \{q\} \times \mathbb{R}^k$ is a vector space isomorphism, we obtain

$$\Phi(\zeta(q)) = \Phi|_{E_q}(0_q) = 0_{\{q\} \times \mathbb{R}^k} = (q, 0).$$

Hence, $\Phi \circ \zeta|_U = \mathrm{Id}_U \times \mathbb{O}_{\mathbb{R}^k}$ is smooth by [*Exercise Sheet 3, Exercise 4*]. As Φ is a diffeomorphism, we infer that $\zeta|_U$ is smooth, and as p was arbitrary, we conclude that ζ is smooth by [*Exercise Sheet 3, Exercise 2*].

Remark. By arguing as above (essentially replacing the words "smooth" with "continuous" and "diffeomorphism" with "homeomorphism"), we can also show that, more generally, the zero section of a (topological) vector bundle is continuous.

(b) Let $p \in M$ and let $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ be a smooth local trivialization, where U is an open neighborhood of $p \in M$. For $q \in U$, denote by $+_q$ the addition and by \cdot_q the scalar multiplication of E_q . By definition we have

$$(f\sigma + g\tau)(q) = f(q) \cdot_q \sigma(q) +_q g(q) \cdot_q \tau(q) \in E_q.$$

Since $\Phi|_{E_q}: E_q \to \{q\} \times \mathbb{R}^k$ is a vector space isomorphism, we obtain

$$\Phi \circ (f\sigma + g\tau)(q) = f(q)(\Phi|_{E_q})\big(\sigma(q)\big) + g(q)(\Phi|_{E_q})\big(\tau(q)\big) \in \{q\} \times \mathbb{R}^k.$$

According to [*Exercise Sheet 3, Exercise 4*], showing that the map $\Phi \circ (f\sigma + g\tau)$ is smooth is equivalent to checking that its post-composition with both projections $\operatorname{pr}_1: U \times \mathbb{R}^k \to U$ and $\operatorname{pr}_2: U \times \mathbb{R}^k \to \mathbb{R}^k$ is smooth. By the above formula we obtain

$$\operatorname{pr}_1 \circ \Phi \circ (f\sigma + g\tau) = \operatorname{Id}_U,$$

so it remains to check post-composition with pr_2 . To this end, set $\hat{\sigma} \coloneqq \operatorname{pr}_2 \circ \Phi \circ \sigma$ and $\hat{\tau} \coloneqq \operatorname{pr}_2 \circ \Phi \circ \tau$, and note that both of them are smooth functions from U to \mathbb{R}^k . The above formula gives

$$\operatorname{pr}_2 \circ \Phi \circ (f\sigma + g\tau)(q) = f(q)\hat{\sigma}(q) + g(q)\hat{\tau}(q).$$

Due to the smoothness of the maps involved, this is also smooth. Thus, $\Phi \circ (f\sigma + g\tau)|_U$ is smooth, and as Φ is a diffeomorphism, we infer that $(f\sigma + g\tau)|_U$ is smooth. Since $p \in M$ was arbitrary, we conclude that $f\sigma + g\tau$ is a smooth global section of E by [*Exercise Sheet* 3, *Exercise* 2(a)].

(c) Consider the projection maps of the given product bundle:

$$\pi = \pi_M \colon E = M \times \mathbb{R}^k \to M, \ (p, v) \mapsto p,$$

and

$$\pi_{\mathbb{R}^k} \colon E = M \times \mathbb{R}^k \to \mathbb{R}^k, \ (p, v) \mapsto v$$

Note that they are both continuous.

Now, let $f: M \to \mathbb{R}^k$ be a continuous function. Consider the continuous map

$$\sigma_f \colon M \to E, \ \sigma_f(p) = (p, f(p))$$

and observe that

$$(\pi \circ \sigma_f)(p) = p = \mathrm{Id}_M(p),$$

so σ_f is a global section of E. Conversely, if $\sigma: M \to E = M \times \mathbb{R}^k$ is a global section of E, then $f_{\sigma} := \pi_{\mathbb{R}^k} \circ \sigma: M \to \mathbb{R}^k$ is a continuous map. Finally, it is easy to check that the assignments $f \mapsto \sigma_f$ and $\sigma \mapsto f_{\sigma}$ just described are inverse to each other; in other words, we have $\sigma = \sigma_{f_{\sigma}}$ and $f = f_{\sigma_f}$.

If M is a smooth manifold, and hence $\pi \colon E = M \times \mathbb{R}^k \to M$ is a smooth product bundle of rank k over M, then the above construction yields a one-to-one correspondence between smooth sections of E and smooth functions from M to \mathbb{R}^k , taking into account *Exercise* 3(e) and *Exercise* 4 from *Exercise Sheet* 3. In particular, if k = 1, then there is a natural identification between the space $C^{\infty}(M)$ of smooth functions on M and the space of smooth sections of the trivial smooth line bundle $M \times \mathbb{R} \to M$.

(d) Fix $q \in E$ and set $p := \pi(q) \in M$. Consider the closed subset $A := \{p\} \subseteq M$ and the section

$$\sigma \colon A \to E, \ p \mapsto q \in E_p$$

of $E|_A = E_p$. We claim that σ extends to a smooth local section of E over some open neighborhood of p. Granting this claim for a moment, by Lemma 6.10 there exists a smooth global section $\tilde{\sigma}$ of E such that $\tilde{\sigma}|_A = \sigma$; in particular, we also have $\tilde{\sigma}(p) = \sigma(p) = q$, which shows that $q \in E$ lies in the image of the smooth global section $\tilde{\sigma} \in \Gamma(E)$.

We now prove the above claim. By definition of a smooth vector bundle, there exists an open neighborhood U of p in M and a diffeomorphism $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ such that

$$\pi_U \circ \Phi = \pi|_{\pi^{-1}(U)},$$

where $\pi_U: U \times \mathbb{R}^k \to U$ is the projection to the first factor. Since $q \in \pi^{-1}(U)$, its image under Φ is a pair $(p, v_q) \in U \times \mathbb{R}^k$ for some vector $v_q \in \mathbb{R}^k$. Consider now the map

$$t: U \to U \times \mathbb{R}^k, \ x \mapsto (x, v_q)$$

which is smooth by *Exercise Sheet 3*, *Exercise* 4(b), as well as the composite map

$$s \coloneqq \Phi^{-1} \circ t \colon U \to \pi^{-1}(U), \ x \mapsto \Phi^{-1}(x, v_q),$$

which is also smooth by [*Exercise Sheet 3, Exercise* 3(e)], and satisfies

$$s(p) = \Phi^{-1}(p, v_q) = q = \sigma(p).$$

Moreover, we have

$$(\pi \circ s)(x) = \left((\pi \circ \Phi^{-1}) \circ t \right)(x) = (\pi_U \circ t)(x) = x = \mathrm{Id}_U(x) \text{ for every } x \in U.$$

Therefore, $s: U \to E$ is a smooth section of E over U and may also be regarded as a smooth extension of $\sigma: A \to E$. This proves the claim and completes the proof of (d).

Remark.

- (1) Let $\pi: E \to M$ be a smooth vector bundle. According to *Exercise* 3, the set $\Gamma(E)$ of smooth global sections of E is an infinite-dimensional \mathbb{R} -vector space and a module over the ring $C^{\infty}(M)$.
- (2) Using *Exercise* 5(a) and *Proposition* 6.14 we give below another, somewhat more direct, solution to *Exercise* 3(d):

Fix $q \in E$ and set $p \coloneqq \pi(q) \in M$. Consider the closed subset $A \coloneqq \{p\} \subseteq M$ and the section

$$\sigma \colon A \to E, \ p \mapsto q \in E_p$$

of $E|_A = E_p$. There exists a smooth local trivialization $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ of E over an open neighborhood U of p, and hence a smooth local frame $(\sigma_1, \ldots, \sigma_k)$ for E over U (associated with Φ) by *Exercise* 5(a). We may thus write

$$\sigma(p) = \sum_{i=1}^{k} v^{i} \sigma_{i}(p) \in E_{p}$$

for some uniquely determined constants $v^i \in \mathbb{R}$, $1 \leq i \leq k$. We now define the map

$$s: U \to E, \ x \mapsto \sum_{i=1}^{k} v^i \sigma_i(x) \in E_x$$

Note that s is a rough section of π , since $(\pi \circ s)(x) = x = \mathrm{Id}_U(x)$, and it is actually smooth by *Proposition 6.14*, since its component functions with respect to the smooth local frame $(\sigma_1, \ldots, \sigma_k)$ are constant (namely, the constants $v^i \in \mathbb{R}$). Since we clearly have $s(p) = \sigma(p)$, the section s is a smooth extension of $\sigma \colon A \to E$ over U. Thus, the statement follows readily from Lemma 6.10 (as above).

Exercise 4 (Completion of smooth local frames for smooth vector bundles): Let $\pi: E \to M$ be a smooth vector bundle of rank k over a smooth manifold M. Prove the following assertions:

(a) If $(\sigma_1, \ldots, \sigma_m)$ is a linearly independent *m*-tuple of smooth local sections of *E* over an open subset $U \subseteq M$, where $1 \leq m < k$, then for each $p \in U$ there exist smooth sections $\sigma_{m+1}, \ldots, \sigma_k$ of *E* defined on some neighborhood *V* of *p* such that $(\sigma_1, \ldots, \sigma_k)$ is a smooth local frame for *E* over $U \cap V$.

- (b) If (v_1, \ldots, v_m) is a linearly independent *m*-tuple of elements of the fiber E_p for some $p \in M$, where $1 \leq m < k$, then there exists a smooth local frame $(\sigma_1, \ldots, \sigma_k)$ for E over some neighborhood of p such that $\sigma_i(p) = v_i$ for every $1 \leq i \leq m$.
- (c) If $A \subseteq M$ is a closed subset and if (τ_1, \ldots, τ_k) is a linearly independent k-tuple of sections of $E|_A$ which are smooth in the sense described in Lemma 6.10, then there exists a smooth local frame $(\sigma_1, \ldots, \sigma_k)$ for E over some neighborhood of A such that $\sigma_i|_A = \tau_i$ for every $1 \le i \le k$.

[Hint: Use Lemma 6.10.]

Solution:

(a) Let V_0 be an open neighborhood of p in M such that there exists a smooth local trivialization $\Phi: \pi^{-1}(V_0) \to V_0 \times \mathbb{R}^k$ of E over V_0 . As $\Phi(\sigma_1(p)), \ldots, \Phi(\sigma_m(p)) \in \{p\} \times \mathbb{R}^k$ are linearly independent, there are vectors $v_{k+1}, \ldots, v_m \in \mathbb{R}^k$ such that the set

$$\left\{\Phi(\sigma_1(p)),\ldots,\Phi(\sigma_m(p)),(p,v_{m+1}),\ldots,(p,v_k)\right\}$$

is a basis of $\{p\} \times \mathbb{R}^k$. For each $m < i \leq k$, define $\sigma_i \colon V_0 \to E$ by $\sigma_i(q) = \Phi^{-1}(q, v_i)$ and note that σ_i is smooth, as both $q \mapsto (q, v_i)$ and Φ^{-1} are so. Now, consider the function

$$d: V_0 \to \mathbb{R}, \ q \mapsto \det\left(\operatorname{pr}_2\left(\Phi(\sigma_1(q))\right), \dots, \operatorname{pr}_2\left(\Phi(\sigma_k(q))\right)\right).$$

We have $d(p) \neq 0$, since by construction the set

$$\left\{ \operatorname{pr}_{2}\left(\Phi(\sigma_{1}(p))\right), \ldots, \operatorname{pr}_{2}\left(\Phi(\sigma_{k}(p))\right) \right\}$$

is a basis of \mathbb{R}^k . As d is continuous, there exists a neighborhood V of p such that $d|_V$ is nowhere zero. Hence, $(\sigma_1, \ldots, \sigma_k)$ is a smooth local frame for E over $U \cap V$.

(b) We may complete (v_1, \ldots, v_m) to a basis (v_1, \ldots, v_k) of $E_p \cong \mathbb{R}^k$. Let U be an open neighborhood of $p \in M$ such that there exists a smooth local trivialization $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ of E over U. As in part (a), we define $\sigma_i: U \to E$ by $\sigma_i(q) := \Phi^{-1}(q, v_i)$, and again by continuity of the determinant, this gives a smooth local frame on some open neighborhood $V \subseteq U$ of p.

(c) By hypothesis and by Lemma 6.10 (applied for U = M), for each $i \in \{1, \ldots, k\}$ there exists a smooth global section τ_i of E such that $\tau_i|_A = \sigma_i$. Therefore, for every $p \in A$ the set $\{\tau_1(p), \ldots, \tau_k(p)\}$ is a basis of E_p , and by continuity of the determinant there exists an open neighborhood U_p of p in M such that $\{\tau_1(q), \ldots, \tau_k(q)\}$ is a basis of E_q for each $q \in U_p$. Thus, $U \coloneqq \bigcup_{p \in A} U_p$ is an open subset of M containing A and additionally for every $x \in U$ the set $\{\tau_1(x), \ldots, \tau_k(x)\}$ is a basis of the fiber E_x ; in other words, (τ_1, \ldots, τ_k) is a smooth local frame for E over the open neighborhood U of A.

Exercise 5 (Correspondence between smooth local frames and smooth local trivializations): Let $\pi: E \to M$ be a smooth vector bundle of rank k over a smooth n-manifold M.

- (a) Given a smooth local trivialization $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ of E over U, construct a smooth local frame (σ_i) for E over U. (We say that the smooth local frame (σ_i) is associated with the smooth local trivialization Φ .)
- (b) Show that every smooth local frame (σ_i) for E is associated with a smooth local trivialization Φ of E.

[Hint: Define the inverse of Φ using (σ_i) and show that it is a bijective local diffeomorphism to conclude.]

- (c) Deduce that E is smoothly trivial if and only if it admits a smooth global frame. Interpret this result in case that E is a smooth *line bundle*, i.e., when k = 1.
- (d) Let (U, φ) be a smooth coordinate chart for M with coordinate functions (x^i) and assume that there exists a smooth local frame (σ_i) for E over U. Consider the map

$$\widetilde{\varphi} \colon \pi^{-1}(U) \to \varphi(U) \times \mathbb{R}^k, \ v^i \sigma_i(p) \mapsto \left(x^1(p), \dots, x^n(p), v^1, \dots, v^k\right).$$

Show that $(\pi^{-1}(U), \widetilde{\varphi})$ is a smooth coordinate chart for E.

Solution:

(a) Let e_1, \ldots, e_k be the standard basis of \mathbb{R}^k . As in *Exercise* 4(b), the smooth local sections $\sigma_i \colon U \to E$ defined by $\sigma_i(q) = \Phi^{-1}(q, e_i)$ determine a smooth local frame for E over U.

(b) Let (σ_i) be a smooth local frame for E over an open subset U of M. Consider the map

$$\Psi \colon U \times \mathbb{R}^k \to \pi^{-1}(U), \ \Psi(q, v) := v_1 \cdot_q \sigma_1(q) + \ldots + v_k \cdot_q \sigma_k(q) \in E_q$$

It is straightforward to check that $\pi \circ \Psi = \text{pr}_1$.

Let us first show that Ψ is bijective. To prove its injectivity, suppose that $\Psi(q, v) = \Psi(q', v')$. By applying π we see that q = q', and thus

$$v_1 \cdot_q \sigma_1(q) + \ldots + v_k \cdot_q \sigma_k(q) = v'_1 \cdot_q \sigma_1(q) + \ldots + v'_k \cdot_q \sigma_k(q)$$

inside E_q . As $\sigma_1(q), \ldots, \sigma_k(q)$ is a basis of E_q , we infer that v = v', and thus we establish the injectivity of Ψ . Now, to prove the surjectivity of Ψ , let $e \in \pi^{-1}(U)$ be arbitrary. Set $q = \pi(e)$ and let $v = (v_1, \ldots, v_k)$ be such that

$$e = v_1 \cdot_q \sigma_1(q) + \ldots + v_k \cdot_q \sigma_k(q)$$

inside E_q . Then $e = \Psi(q, v)$, so we are done.

It remains to check that Ψ is a local diffeomorphism. Let $p \in U$ and let $\Phi: \pi^{-1}(V) \to V \times \mathbb{R}^k$ be a smooth local trivialization of E, where V is an open neighborhood of p contained in U. Since Φ is a diffeomorphism, if we could show that $\Phi \circ \Psi|_{V \times \mathbb{R}^k}$ is a diffeomorphism from $V \times \mathbb{R}^k$ to itself, then we would infer that $\Psi|_{V \times \mathbb{R}^k}$ is a diffeomorphism from $V \times \mathbb{R}^k$ to its image $\pi^{-1}(V)$.

Since $\Phi \circ \sigma_i|_V \colon V \to V \times \mathbb{R}^k$ is smooth and since post-composition with pr_1 equals Id_V , we see that it is of the form

$$\Phi \circ \sigma_i|_V(q) = \left(q, \left(\sigma_i^1(q), \dots, \sigma_i^k(q)\right)\right)$$

for some smooth functions $\sigma_i^1, \ldots, \sigma_i^k \colon V \to \mathbb{R}$. If we denote by $A \colon V \to \operatorname{Mat}(k \times k, \mathbb{R})$ the function sending q to the matrix $(\sigma_i^j(q))_{1 \leq j,i \leq k}$ (where j is the index for the lines and i is the index for the columns of the matrix), then A is smooth, as every component is smooth. Furthermore, the image of A lies in $\operatorname{GL}(k, \mathbb{R})$ because $\sigma_i(q), \ldots, \sigma_i(q)$ is a basis of \mathbb{R}^k by assumption. Now, by construction of Ψ , it is straightforward to check that for any $(q, v) \in V \times \mathbb{R}^k$ we have

$$(\Phi \circ \Psi)(q, v) = (q, A(q) \cdot v) \in V \times \mathbb{R}^k.$$

This is clearly smooth, as A is smooth. We then also see that $(\Phi \circ \Psi|_{V \times \mathbb{R}^k})^{-1}$ sends (q, v) to $(q, A(q)^{-1} \cdot v)$, which is smooth as well (we use here that the map $\operatorname{GL}(k, \mathbb{R}) \to \operatorname{GL}(k, \mathbb{R})$ sending a matrix to its inverse is smooth). Therefore, $\Psi|_{V \times \mathbb{R}^k} \colon V \times \mathbb{R}^k \to \pi^{-1}(V)$ is a diffeomorphism, as desired.

In conclusion, Ψ is a bijective local diffeomorphism, and hence a global diffeomorphism by [*Exercise Sheet* 6, *Exercise* 4(f)]. It is now straightforward to check that $\Phi = \Psi^{-1}: \pi^{-1}(U) \to U \times \mathbb{R}^k$ is a smooth local trivialization of E over U such that the given smooth local frame (σ_i) is associated with Φ .

(c) Recall that E is smoothly trivial if and only if it admits a smooth global trivialization. Thus, E is smoothly trivial if and only if it admits a smooth global frame by (a) and (b).

Assume now that E is a smooth vector bundle of rank k = 1 over M. Then E is smoothly trivial if and only if it admits a smooth global frame. Such a frame consists of a single smooth global section $\sigma: M \to E$ with the property that for each $p \in M$, the element $\sigma(p) \in E_p$ is a basis of the 1-dimensional \mathbb{R} -vector space E_p , and hence $\sigma(p) \neq 0$. Conversely, every smooth global section $\sigma: M \to E$ of E such that $\sigma(p) \in E_p \setminus \{0\}$ determines a smooth global frame for E. In conclusion, the smooth line bundle $E \to M$ is smoothly trivial if and only if it admits a nowhere vanishing smooth global section.

(d) By part (b), there exists a smooth local trivialization $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k$ such that (σ_i) is associated with Φ . In particular, we have $(\Phi \circ \sigma_i)(q) = (q, e_i)$ for all $q \in U$, where e_1, \ldots, e_k is the standard basis of \mathbb{R}^k . Now let $\psi: \pi^{-1}(U) \to \varphi(U) \times \mathbb{R}^k$ be the composition $\psi = (\varphi \times \mathrm{Id}_{\mathbb{R}^k}) \circ \Phi$, where $\varphi \times \mathrm{Id}_{\mathbb{R}^k}: U \times \mathbb{R}^k \to \varphi(U) \times \mathbb{R}^k$ is defined by applying φ on U and $\mathrm{Id}_{\mathbb{R}^k}$ on \mathbb{R}^k . Note that ψ is a diffeomorphism as both Φ and $\varphi \times \mathrm{Id}_{\mathbb{R}^k}$ are diffeomorphisms. To see how ψ acts on the points of $\pi^{-1}(U)$, let $e \in \pi^{-1}(U)$ be arbitrary, and set $q = \pi(e) \in U$. As $\sigma_1(q), \ldots, \sigma_k(q)$ is a basis of E_q , there exist real numbers v^1, \ldots, v^k such that $e = v^i \sigma_i(q)$. As $(\Phi \circ \sigma_i)(q) = (q, e_i)$, we obtain $\Phi(e) = (q, (v^i))$, so $\psi(e) = (\varphi(q), (v^i))$. Therefore, $\psi = \tilde{\varphi}$. As ψ is a diffeomorphism, this proves that $(\pi^{-1}(U), \tilde{\varphi})$ is a smooth coordinate chart for E.

Remark. By arguing as in the solution to *Exercise* 3(a)(b) – essentially by replacing the words "smooth" with "continuous" and "diffeomorphism" with "homeomorphism" – one can also show that, more generally, there is a correspondence between (continuous) local frames and (continuous) local trivializations for any (topological) vector bundle. This allows one to prove the topological case of *Proposition 6.14* with an essentially identical argument to the smooth case (which was treated in the lecture).

Exercise 6 (Uniqueness of the smooth structure on TM): Let M be a smooth n-manifold. Show that the topology and smooth structure on the tangent bundle TM constructed in Proposition 3.12 are the unique ones with respect to which $\pi: TM \to M$ is a smooth vector bundle with the given vector space structure on the fibers, and such that all coordinate vector fields are smooth local sections.

[Hint: Use *Exercise* 5(d).]

Solution: Denote by (TM)' a smooth manifold with underlying set $TM = \bigsqcup_{p \in M} T_p M$, but with possibly different topology and smooth structure than the usual tangent bundle TM, such that the map $\pi' \colon (TM)' \to M$, sending $v \in T_p M$ to $p \in M$, gives (TM)' the structure of a smooth vector bundle over M such that all the coordinate vector fields are smooth local sections. (Note that, as set-theoretic maps, π and π' are the same, but we denote them differently to emphasize that their source may have different topology and smooth structure.) By assumption, if $(U, (x^1, \ldots, x^n))$ is a smooth chart for M, then the maps

$$\frac{\partial}{\partial x^i} \colon U \to (TM)'$$
$$p \mapsto \frac{\partial}{\partial x^i} \Big|_p$$

are smooth local sections of π' . Since for every $p \in U$ the vectors $\frac{\partial}{\partial x^1}\Big|_p, \ldots, \frac{\partial}{\partial x^n}\Big|_p$ form a basis of T_pM , it follows that $\left(\frac{\partial}{\partial x^i}\Big|_p\right)_{1\leq i\leq n}$ is a smooth local frame for (TM)', and according to *Exercise* 5(d), the map

$$\widetilde{\varphi} \colon (\pi')^{-1}(U) \to \varphi(U) \times \mathbb{R}^n$$
$$\left(p, v^i \frac{\partial}{\partial x^i} \Big|_p \right) \mapsto \left(\varphi(p), v^1, \dots, v^n \right)$$

is a smooth chart for (TM)'. But the same holds for TM (as we saw in the proof of *Proposition 3.12*). It follows that the identity map $TM \to (TM)'$ is a diffeomorphism. In particular, it is a homeomorphism, and thus also the topology agrees.

Remark. We somewhat used in *Exercise* 6 that the smooth structure actually determines the topology. That is, we have the following:

Let M be a set and let \mathcal{T} and \mathcal{T}' be two topologies on M, both endowing it with the structure of a topological manifold. Supposed that \mathcal{A} is an atlas for both topologies, such that both $(M, \mathcal{T}, \mathcal{A})$ and $(M, \mathcal{T}', \mathcal{A})$ are smooth manifolds. Then $\mathcal{T} = \mathcal{T}'$. Indeed, the identity $\mathrm{Id}_M \colon (M, \mathcal{T}, \mathcal{A}) \to (M, \mathcal{T}', \mathcal{A})$ is smooth, as we have the same atlas on both sides; in particular, it is continuous, so $\mathcal{T}' \subseteq \mathcal{T}$. A symmetric argument also shows that the reverse inclusion holds. Therefore, $\mathcal{T} = \mathcal{T}'$, as claimed.