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Exercise Sheet 10 – Solutions

Exercise 1:

(a) Let π : E → M be a smooth vector bundle over a smooth manifold M . Show that π
is a surjective smooth submersion.

(b) Let π : E → M be a smooth vector bundle of rank k over a smooth manifold M .
Suppose that Φ: π−1(U) → U × Rk and Ψ: π−1(V ) → V × Rk are two smooth local
trivializations of E with U ∩ V ̸= ∅. Show that the transition function τ : U ∩ V →
GL(k,R) between Φ and Ψ is smooth.

(c) Consider the tangent bundle π : TM → M of a smooth n-manifold M and let
Φ: π−1(U) → U × Rn and Ψ: π−1(V ) → V × Rn be the smooth local trivializa-
tions of TM associated with two smooth charts (U,φ) and (V, ψ) for M . Determine
the transition function τ : U ∩ V → GL(n,R) between Φ and Ψ.

(d) Consider the tangent bundle π : TS2 → S2 of the unit sphere S2 ⊆ R3. Compute
the transition function associated with the two local trivializations determined by
stereographic coordinates.

(e) Let π : E → M be a smooth vector bundle of rank k over a smooth manifold M .
Suppose that {Uα}α∈A is an open cover of M , and that for each α ∈ A we are given
a smooth local trivialization Φα : π

−1(Uα) → Uα × Rk of E. For each α, β ∈ A such
that Uα∩Uβ ̸= ∅, let ταβ : Uα∩Uβ → GL(k,R) be the transition function between the
smooth local trivializations Φα and Φβ. Show that the following identity is satisfied
for all α, β, γ ∈ A:

ταβ(p)τβγ(p) = ταγ(p) for all p ∈ Uα ∩ Uβ ∩ Uγ. (⋆)

Solution:

(a) By definition of a smooth vector bundle, π is smooth and surjective, so it remains
to check that it is a smooth submersion. Let q ∈ E and set p := π(q) ∈ M . Again by
definition of a smooth vector bundle, there exists an open neighborhood U of p in M and
a diffeomorphism Φ: π−1(U) → U ×Rk (assuming that π : E →M is of rank k) such that
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πU ◦Φ = π|π−1(U), where πU : U ×Rk → U is the projection to the first factor, which is a
smooth submersion by [Exercise Sheet 6, Exercise 2(a)]. It follows from [Exercise Sheet
6, Exercise 1(a)(i)] and [Exercise Sheet 6, Exercise 5(a)] that π|π−1(U) itself is a smooth
submersion, that is, its differential is surjective at every point of π−1(U), which is an
open neighborhood of q in E. Since q ∈ E was arbitrary, we conclude that π is a smooth
submersion.

(b) Consider the standard bases {ei}ki=1 of Rk and {Eij}ki,j=1 of GL(k,R). For each p ∈
U ∩ V , denote by αij(p) ∈ R the (i, j)-th element of the matrix τ(p) ∈ GL(k,R) and
observe that

τ(p) =
k∑

i,j=1

αij(p)Eij.

For each j ∈ {1, . . . , k} we have

τ(p) · ej =
(
α1j(p), . . . , αkj(p)

)
=

k∑
i=1

αij(p) ei.

If now for each i ∈ {1, . . . , k} we denote by πij the (projection) map

πij : (U ∩ V )× Rk → R,
(
q, (v1j, . . . , vkj)

)
7→ vij,

which is smooth by [Exercise Sheet 3, Exercise 4(a)], then we obtain(
πij ◦ Φ ◦Ψ−1

)
(p, ej) = πij

(
p,
(
α1j(p), . . . , αkj(p)

))
= αij(p).

Therefore, each map αij : U ∩ V → R, p 7→ αij(p) is smooth as a composite of smooth
maps. In view of [Exercise Sheet 2, Exercise 2], which gives the smooth chart

ψ : GL(k2,R) → Rk2 ,
k∑

i,j=1

mij Eij 7→
k∑

i,j=1

mij ϵij

for GL(k,R), we now deduce readily that the transition function τ : U ∩ V → GL(k,R)
between Φ and Ψ is smooth; indeed, it has a smooth coordinate representation ψ ◦ τ ◦φ−1

with respect to ψ and any (fixed) smooth chart φ for M around (an arbitrary point)
p ∈ U ∩ V , since its component functions αij are smooth.

(c) Denote by (x1, . . . , xn) and (x̃1, . . . , x̃n) the coordinate functions of the smooth coor-
dinate charts (U,φ) and (V, ψ), respectively, and recall that the associated smooth local
trivializations Φ and Ψ, respectively, are defined as follows:

Φ: π−1(U) → U × Rk, vi
∂

∂xi

∣∣∣∣
p

7→
(
p, (v1, . . . , vn)

)
and

Ψ: π−1(V ) → V × Rk, ṽi
∂

∂x̃i

∣∣∣∣
p

7→
(
p, (ṽ1, . . . , ṽn)

)
.

Since
∂

∂x̃i

∣∣∣∣
p

=
∂xj

∂x̃i
(
p̂
) ∂

∂xj

∣∣∣∣
p

,
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we have (
Φ ◦Ψ−1

)(
p, (v1, . . . , vn)

)
= Φ

(
vi

∂

∂x̃i

∣∣∣∣
p

)
= Φ

((
vi
∂xj

∂x̃i
(
p̂
)) ∂

∂xj

∣∣∣∣
p

)

=

(
p,
(
vi
∂x1

∂x̃i
(
p̂
)
, . . . , vi

∂xn

∂x̃i
(
p̂
)))

=
(
p,Ap · (v1, . . . , vn)T

)
,

where

Ap :=

(
∂xj

∂x̃i
(
p̂
))

i, j=1,...,n

∈ GL(n,R)

is the Jacobian matrix at p̂ = φ(p) = ψ(p) of the transition map

φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V ).

(Recall also that the matrix Ap represents the differential d
(
φ ◦ ψ−1

)
p̂
with respect to

coordinate bases.) Therefore, the transition function τ between Φ and Ψ is the map

τ : U ∩ V → GL(n,R), p 7→ Ap =

(
∂xj

∂x̃i
(
p̂
))

i, j

.

(d) We use the same notation as the one used in [Exercise Sheet 2, Exercise 5]. According
to the solution of part (c), the transition function τ : S2 \ {N,S} → GL(2,R) between
the two smooth local trivializations of TS2 determined by the stereographic coordinates(
S2 \ {N}, σ

)
and

(
S2 \ {S}, σ̃

)
is given at every point p ∈ S2 \ {N,S} by the Jacobian

matrix at p̂ = σ(p) = σ̃(p) of the transition map σ ◦ σ̃−1. We saw in [Exercise Sheet 2,
Exercise 5] that σ ◦ σ̃−1 is given by the formula(

σ ◦ σ̃−1
)
(ũ, ṽ) =

(
ũ

ũ2 + ṽ2
,

ṽ

ũ2 + ṽ2

)
= (u, v), (ũ, ṽ) ∈ R2 \ {(0, 0)}.

Thus, its Jacobian at an arbitrary point (ũ, ṽ) ∈ R2 \ {(0, 0)} is the matrix

J
(
σ ◦ σ̃−1

)
(ũ, ṽ) =


ṽ2 − ũ2

(ũ2 + ṽ2)2
−2ũṽ

(ũ2 + ṽ2)2

−2ũṽ

(ũ2 + ṽ2)2
ũ2 − ṽ2

(ũ2 + ṽ2)2


(whose determinant equal to − 1

(ũ2 + ṽ2)2
, which is clearly non-zero).

(e) Fix indices α, β, γ ∈ A and a point p ∈ Uα ∩ Uβ ∩ Uγ. According to Lemma 6.5, for
any v ∈ Rk we have (

p, ταγ(p)v
)
=
(
Φα ◦ Φ−1

γ

)
(p, v)

=
(
Φα ◦ Φ−1

β

)
◦
(
Φβ ◦ Φ−1

γ

)
(p, v)

=
(
Φα ◦ Φ−1

β

)(
p, τβγ(p)v

)
=
(
p, ταβ(p)τβγ(p)v

)
,
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which implies that
ταβ(p)τβγ(p) = ταγ(p).

Since α, β, γ and p were arbitrary, we obtain (⋆).

Exercise 2 (Smooth vector bundle construction lemma): Let M be a smooth manifold
and let {Uα}α∈A be an open cover of M . Suppose that for each α, β ∈ A we are given a
smooth map ταβ : Uα ∩ Uβ → GL(k,R) such that (⋆) is satisfied for all α, β, γ ∈ A. Show
that there is a smooth vector bundle E → M of rank k with smooth local trivializations
Φα : π

−1(Uα) → Uα × Rk whose transitions functions are the given maps ταβ.

[Hint: Define an appropriate equivalence relation on
∐(

Uα × Rk
)
and use the vector

bundle chart lemma.]

Solution: We first fix some notation: Set

E :=
∐(

Uα × Rk
)
;

and for (p, v) ∈ Uα × Rk, denote by (p, v)α its image in E .
As suggested by the hint, consider now the following relation ∼ on E : two points

(p, v)α, (p
′, v′)β ∈ E are equivalent if and only if

p = p′ and v = ταβ(p) · v′,

in which case we write (p, v)α ∼ (p′, v′)β. Let us check that ∼ indeed an equivalence
relation on E :

• Reflexivity : By applying (⋆) to α = β = γ we obtain ταα ≡ Idk×k. It follows that
v = ταα(p)v for all (p, v) ∈ Uα × Rk, and thus (p, v)α ∼ (p, v)α.

• Symmetry : Suppose that (p, v)α ∼ (p′, v′)β, i.e., p = p′ and v = ταβ(p)v
′. By

applying (⋆) to α, β and γ = α we obtain τβα(p) =
(
ταβ(p)

)−1
. Thus,

v′ = (ταβ(p))
−1 · v = τβα(p

′) · v,

whence (p′, v′)β ∼ (p, v)α.

• Transitivity : Suppose that (p, v)α ∼ (p′, v′)β and (p′, v′)β ∼ (p′′, v′′)γ. Then

p = p′ = p′′ and v = ταβ(p) · v′, v′ = τβγ(p
′) · v′′.

In particular, we obtain

v = ταβ(p)τβγ(p
′) · v′′ (⋆)

= ταγ(p) · v′′,

which shows that (p, v)α ∼ (p′′, v′′)β.

Next, set
E := E/ ∼
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and denote by [(p, v)α] ∈ E the equivalence class of (p, v)α ∈ E . Note that the map
E → M sending (p, v)α to p factors through E, because if (p, v)α ∼ (p′, v′)β, then in
particular p = p′. So, consider the map

π : E →M, [(p, v)α] 7→ p.

Now, let α be arbitrary and let us verify that

Ψα : Uα × Rk → π−1(Uα)

(p, v) 7→ [(p, v)α]

is a bijection. For injectivity, suppose that Ψα(p, v) = Ψα(p
′, v′). In particular, we obtain

p = p′ and v = ταα(p)v
′ = v′. For surjectivity, let [(p′, v′)β] ∈ π−1(Uα) be arbitrary. Notice

that p := π([p′, v′]) ∈ Uα, and set v = ταβ(p)v
′. Then we have (p, v)α ∼ (p′, v′)β, and thus

[(p′, v′)β] = Ψα(p, v). Hence, Ψα is bijective, as claimed. Finally, with a similar argument
it is straightforward to check that Ψα({p} × Rk) = π−1(p).

By bijectivity we may write Φα = (Ψα)
−1. To endow the fibers π−1(p) with a vector

space structure, let αp be such that p ∈ Uαp . We endow π−1(p) with the structure of a
k-dimensional real vector space via the bijection π−1(p) ∼= {p}×Rk provided by Φαp . We
denote the resulting real vector space by Ep = π−1(p). Since we chose αp at random, we
have to check that the choice does not matter. To this end, let α be arbitrary and take
p ∈ Uα. We have to check that Φα|Ep is a vector space isomorphism from Ep to {p}×Rk.
So, pick (p, v)αp ∈ Ep, and set v′ = τα,αp(p) · v, so that (p, v′)α ∼ (p, v)αp . Then

Φα

(
[(p, v)αp ]

)
= Φα

(
[(p, v′)α]

)
= (p, v′) =

(
p, τα,αp(p) · v

)
.

As τα,αp(p) ∈ GL(k,R), we infer that Φα|Ep : Ep → {p} × Rk is an isomorphism of real
vector spaces.

Finally, to apply the Vector Bundle Chart Lemma, we have to verify that the Φα’s are
compatible. Let α, β be such that Uα ∩ Uβ ̸= ∅. Take (p, v) ∈ (Uα ∩ Uβ)× Rk. We want
to compute

(
Φα ◦Φ−1

β

)
(p, v). By construction, we see that Φ−1

β (p, v) = [(p, v)β]. Now, let
v′ = ταβ(p) · v, so that (p, v′)α ∼ (p, v)β. Then we have(

Φα ◦ Φ−1
β

)
(p, v) = Φα

(
[(p, v′)α]

)
= (p, v′) =

(
p, ταβ(p) · v

)
.

Since by hypothesis the maps ταβ : Uα ∩ Uβ → GL(k,R) are smooth, the Vector Bundle
Chart Lemma implies that E has a unique topology and smooth structure such that
π : E →M is a smooth vector bundle of rank k, and the Φα’s are its local trivializations,
with transition functions the ταβ’s.

Exercise 3:

(a) Show that the zero section of every smooth vector bundle is smooth.

[Hint: Consider Φ ◦ ζ, where Φ is a local trivialization.]

(b) Let π : E → M be a smooth vector bundle. Show that if f, g ∈ C∞(M) and if
σ, τ ∈ Γ(E), then fσ + gτ ∈ Γ(E).

[Hint: Consider Φ ◦ (fσ + gτ), where Φ is a local trivialization of E.]
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(c) Let E := M × Rk be a product bundle over a topological manifold M . Show that
there is a natural one-to-one correspondence between (continuous) sections of E and
continuous functions from M to Rk.

Moreover, if M is a smooth manifold, show that this is a one-to-one correspondence
between smooth sections of E and smooth functions from M to Rk. Deduce that
there is a natural identification between the space C∞(M) and the space of smooth
sections of the trivial line bundle M × R →M .

(d) Let π : E → M be a smooth vector bundle. Show that each element of E is in the
image of a smooth global section of E.

[Hint: Use Lemma 6.10.]

Solution:

(a) Let p ∈ M and let Φ: π−1(U) → U × Rk be a smooth local trivialization, where
U is a neighborhood of p. Given q ∈ U , write 0q for the zero element of Eq = π−1(q).
By definition we have ζ(q) = 0q ∈ Eq. Since Φ|Eq : Eq → {q} × Rk is a vector space
isomorphism, we obtain

Φ
(
ζ(q)

)
= Φ|Eq(0q) = 0{q}×Rk = (q, 0).

Hence, Φ ◦ ζ|U = IdU ×ORk is smooth by [Exercise Sheet 3, Exercise 4]. As Φ is a
diffeomorphism, we infer that ζ|U is smooth, and as p was arbitrary, we conclude that ζ
is smooth by [Exercise Sheet 3, Exercise 2].

Remark. By arguing as above (essentially replacing the words “smooth” with “continuous”
and “diffeomorphism” with “homeomorphism”), we can also show that, more generally,
the zero section of a (topological) vector bundle is continuous.

(b) Let p ∈ M and let Φ: π−1(U) → U × Rk be a smooth local trivialization, where U
is an open neighborhood of p ∈ M . For q ∈ U , denote by +q the addition and by ·q the
scalar multiplication of Eq. By definition we have

(fσ + gτ)(q) = f(q) ·q σ(q) +q g(q) ·q τ(q) ∈ Eq.

Since Φ|Eq : Eq → {q} × Rk is a vector space isomorphism, we obtain

Φ ◦ (fσ + gτ)(q) = f(q)(Φ|Eq)
(
σ(q)

)
+ g(q)(Φ|Eq)

(
τ(q)

)
∈ {q} × Rk.

According to [Exercise Sheet 3, Exercise 4], showing that the map Φ◦ (fσ+gτ) is smooth
is equivalent to checking that its post-composition with both projections pr1 : U×Rk → U
and pr2 : U × Rk → Rk is smooth. By the above formula we obtain

pr1 ◦Φ ◦ (fσ + gτ) = IdU ,

so it remains to check post-composition with pr2. To this end, set σ̂ := pr2 ◦Φ ◦ σ and
τ̂ := pr2 ◦Φ ◦ τ , and note that both of them are smooth functions from U to Rk. The
above formula gives

pr2 ◦Φ ◦ (fσ + gτ)(q) = f(q)σ̂(q) + g(q)τ̂(q).
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Due to the smoothness of the maps involved, this is also smooth. Thus, Φ◦ (fσ+ gτ)|U is
smooth, and as Φ is a diffeomorphism, we infer that (fσ+ gτ)|U is smooth. Since p ∈M
was arbitrary, we conclude that fσ+gτ is a smooth global section of E by [Exercise Sheet
3, Exercise 2(a)].

(c) Consider the projection maps of the given product bundle:

π = πM : E =M × Rk →M, (p, v) 7→ p,

and
πRk : E =M × Rk → Rk, (p, v) 7→ v.

Note that they are both continuous.
Now, let f : M → Rk be a continuous function. Consider the continuous map

σf : M → E, σf (p) =
(
p, f(p)

)
and observe that (

π ◦ σf
)
(p) = p = IdM(p),

so σf is a global section of E. Conversely, if σ : M → E = M × Rk is a global section of
E, then fσ := πRk ◦ σ : M → Rk is a continuous map. Finally, it is easy to check that the
assignments f 7→ σf and σ 7→ fσ just described are inverse to each other; in other words,
we have σ = σfσ and f = fσf

.
If M is a smooth manifold, and hence π : E = M × Rk → M is a smooth product

bundle of rank k over M , then the above construction yields a one-to-one correspondence
between smooth sections of E and smooth functions from M to Rk, taking into account
Exercise 3 (e) and Exercise 4 from Exercise Sheet 3. In particular, if k = 1, then there
is a natural identification between the space C∞(M) of smooth functions on M and the
space of smooth sections of the trivial smooth line bundle M × R →M .

(d) Fix q ∈ E and set p := π(q) ∈M . Consider the closed subset A := {p} ⊆M and the
section

σ : A→ E, p 7→ q ∈ Ep

of E|A = Ep. We claim that σ extends to a smooth local section of E over some open
neighborhood of p. Granting this claim for a moment, by Lemma 6.10 there exists a
smooth global section σ̃ of E such that σ̃|A = σ; in particular, we also have σ̃(p) = σ(p) =
q, which shows that q ∈ E lies in the image of the smooth global section σ̃ ∈ Γ(E).

We now prove the above claim. By definition of a smooth vector bundle, there exists
an open neighborhood U of p in M and a diffeomorphism Φ: π−1(U) → U ×Rk such that

πU ◦ Φ = π|π−1(U),

where πU : U × Rk → U is the projection to the first factor. Since q ∈ π−1(U), its image
under Φ is a pair (p, vq) ∈ U × Rk for some vector vq ∈ Rk. Consider now the map

t : U → U × Rk, x 7→ (x, vq),

which is smooth by[Exercise Sheet 3, Exercise 4(b)], as well as the composite map

s := Φ−1 ◦ t : U → π−1(U), x 7→ Φ−1(x, vq),
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which is also smooth by [Exercise Sheet 3, Exercise 3(e)], and satisfies

s(p) = Φ−1(p, vq) = q = σ(p).

Moreover, we have

(π ◦ s)(x) =
(
(π ◦ Φ−1) ◦ t

)
(x) = (πU ◦ t)(x) = x = IdU(x) for every x ∈ U.

Therefore, s : U → E is a smooth section of E over U and may also be regarded as a
smooth extension of σ : A→ E. This proves the claim and completes the proof of (d).

Remark.

(1) Let π : E →M be a smooth vector bundle. According to Exercise 3, the set Γ(E) of
smooth global sections of E is an infinite-dimensional R-vector space and a module
over the ring C∞(M).

(2) Using Exercise 5(a) and Proposition 6.14 we give below another, somewhat more
direct, solution to Exercise 3(d):

Fix q ∈ E and set p := π(q) ∈M . Consider the closed subset A := {p} ⊆M and the
section

σ : A→ E, p 7→ q ∈ Ep

of E|A = Ep. There exists a smooth local trivialization Φ: π−1(U) → U × Rk of E
over an open neighborhood U of p, and hence a smooth local frame (σ1, . . . , σk) for
E over U (associated with Φ) by Exercise 5(a). We may thus write

σ(p) =
k∑

i=1

viσi(p) ∈ Ep

for some uniquely determined constants vi ∈ R, 1 ≤ i ≤ k. We now define the map

s : U → E, x 7→
k∑

i=1

viσi(x) ∈ Ex.

Note that s is a rough section of π, since
(
π ◦ s

)
(x) = x = IdU(x), and it is actually

smooth by Proposition 6.14, since its component functions with respect to the smooth
local frame (σ1, . . . , σk) are constant (namely, the constants vi ∈ R). Since we clearly
have s(p) = σ(p), the section s is a smooth extension of σ : A→ E over U . Thus, the
statement follows readily from Lemma 6.10 (as above).

Exercise 4 (Completion of smooth local frames for smooth vector bundles): Let π : E →
M be a smooth vector bundle of rank k over a smooth manifold M . Prove the following
assertions:

(a) If (σ1, . . . , σm) is a linearly independent m-tuple of smooth local sections of E over
an open subset U ⊆ M , where 1 ≤ m < k, then for each p ∈ U there exist smooth
sections σm+1, . . . , σk of E defined on some neighborhood V of p such that (σ1, . . . , σk)
is a smooth local frame for E over U ∩ V .
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(b) If (v1, . . . , vm) is a linearly independent m-tuple of elements of the fiber Ep for some
p ∈ M , where 1 ≤ m < k, then there exists a smooth local frame (σ1, . . . , σk) for E
over some neighborhood of p such that σi(p) = vi for every 1 ≤ i ≤ m.

(c) If A ⊆ M is a closed subset and if (τ1, . . . , τk) is a linearly independent k-tuple of
sections of E|A which are smooth in the sense described in Lemma 6.10, then there
exists a smooth local frame (σ1, . . . , σk) for E over some neighborhood of A such that
σi|A = τi for every 1 ≤ i ≤ k.

[Hint: Use Lemma 6.10.]

Solution:

(a) Let V0 be an open neighborhood of p in M such that there exists a smooth local
trivialization Φ: π−1(V0) → V0×Rk of E over V0. As Φ

(
σ1(p)

)
, . . . ,Φ

(
σm(p)

)
∈ {p}×Rk

are linearily independent, there are vectors vk+1, . . . , vm ∈ Rk such that the set{
Φ
(
σ1(p)

)
, . . . ,Φ

(
σm(p)

)
, (p, vm+1), . . . , (p, vk)

}
is a basis of {p} × Rk. For each m < i ≤ k, define σi : V0 → E by σi(q) = Φ−1(q, vi) and
note that σi is smooth, as both q 7→ (q, vi) and Φ−1 are so. Now, consider the function

d : V0 → R, q 7→ det
(
pr2

(
Φ
(
σ1(q)

))
, . . . , pr2

(
Φ
(
σk(q)

)))
.

We have d(p) ̸= 0, since by construction the set{
pr2

(
Φ
(
σ1(p)

))
, . . . , pr2

(
Φ
(
σk(p)

))}
is a basis of Rk. As d is continuous, there exists a neighborhood V of p such that d|V is
nowhere zero. Hence, (σ1, . . . , σk) is a smooth local frame for E over U ∩ V .

(b) We may complete (v1, . . . , vm) to a basis (v1, . . . , vk) of Ep
∼= Rk. Let U be an open

neighborhood of p ∈M such that there exists a smooth local trivialization Φ: π−1(U) →
U × Rk of E over U . As in part (a), we define σi : U → E by σi(q) := Φ−1(q, vi), and
again by continuity of the determinant, this gives a smooth local frame on some open
neighborhood V ⊆ U of p.

(c) By hypothesis and by Lemma 6.10 (applied for U =M), for each i ∈ {1, . . . , k} there
exists a smooth global section τi of E such that τi|A = σi. Therefore, for every p ∈ A the
set
{
τ1(p), . . . , τk(p)} is a basis of Ep, and by continuity of the determinant there exists

an open neighborhood Up of p in M such that
{
τ1(q), . . . , τk(q)} is a basis of Eq for each

q ∈ Up. Thus, U :=
⋃

p∈A Up is an open subset of M containing A and additionally for

every x ∈ U the set
{
τ1(x), . . . , τk(x)} is a basis of the fiber Ex; in other words, (τ1, . . . , τk)

is a smooth local frame for E over the open neighborhood U of A.

Exercise 5 (Correspondence between smooth local frames and smooth local trivializa-
tions): Let π : E → M be a smooth vector bundle of rank k over a smooth n-manifold
M .
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(a) Given a smooth local trivialization Φ: π−1(U) → U × Rk of E over U , construct a
smooth local frame (σi) for E over U . (We say that the smooth local frame (σi) is
associated with the smooth local trivialization Φ.)

(b) Show that every smooth local frame (σi) for E is associated with a smooth local
trivialization Φ of E.

[Hint: Define the inverse of Φ using (σi) and show that it is a bijective local diffeo-
morphism to conclude.]

(c) Deduce that E is smoothly trivial if and only if it admits a smooth global frame.
Interpret this result in case that E is a smooth line bundle, i.e., when k = 1.

(d) Let (U,φ) be a smooth coordinate chart for M with coordinate functions (xi) and
assume that there exists a smooth local frame (σi) for E over U . Consider the map

φ̃ : π−1(U) → φ(U)× Rk, viσi(p) 7→
(
x1(p), . . . , xn(p), v1, . . . , vk

)
.

Show that
(
π−1(U), φ̃

)
is a smooth coordinate chart for E.

Solution:

(a) Let e1, . . . , ek be the standard basis of Rk. As in Exercise 4(b), the smooth local
sections σi : U → E defined by σi(q) = Φ−1(q, ei) determine a smooth local frame for E
over U .

(b) Let (σi) be a smooth local frame for E over an open subset U of M . Consider the
map

Ψ: U × Rk → π−1(U), Ψ(q, v) := v1 ·q σ1(q) + . . .+ vk ·q σk(q) ∈ Eq.

It is straightforward to check that π ◦Ψ = pr1.
Let us first show that Ψ is bijective. To prove its injectivity, suppose that Ψ(q, v) =

Ψ(q′, v′). By applying π we see that q = q′, and thus

v1 ·q σ1(q) + . . .+ vk ·q σk(q) = v′1 ·q σ1(q) + . . .+ v′k ·q σk(q)

inside Eq. As σ1(q), . . . , σk(q) is a basis of Eq, we infer that v = v′, and thus we establish
the injectivity of Ψ. Now, to prove the surjectivity of Ψ, let e ∈ π−1(U) be arbitrary. Set
q = π(e) and let v = (v1, . . . , vk) be such that

e = v1 ·q σ1(q) + . . .+ vk ·q σk(q)

inside Eq. Then e = Ψ(q, v), so we are done.
It remains to check that Ψ is a local diffeomorphism. Let p ∈ U and let Φ: π−1(V ) →

V × Rk be a smooth local trivialization of E, where V is an open neighborhood of p
contained in U . Since Φ is a diffeomorphism, if we could show that Φ ◦ Ψ|V×Rk is a
diffeomorphism from V ×Rk to itself, then we would infer that Ψ|V×Rk is a diffeomorphism
from V × Rk to its image π−1(V ).

Since Φ ◦ σi|V : V → V × Rk is smooth and since post-composition with pr1 equals
IdV , we see that it is of the form

Φ ◦ σi|V (q) =
(
q, (σ1

i (q), . . . , σ
k
i (q))

)
10



for some smooth functions σ1
i , . . . , σ

k
i : V → R. If we denote by A : V → Mat(k × k,R)

the function sending q to the matrix
(
σj
i (q)

)
1≤j,i≤k

(where j is the index for the lines and

i is the index for the columns of the matrix), then A is smooth, as every component is
smooth. Furthermore, the image of A lies in GL(k,R) because σi(q), . . . , σi(q) is a basis
of Rk by assumption. Now, by construction of Ψ, it is straightforward to check that for
any (q, v) ∈ V × Rk we have(

Φ ◦Ψ
)
(q, v) =

(
q, A(q) · v

)
∈ V × Rk.

This is clearly smooth, as A is smooth. We then also see that (Φ ◦Ψ|V×Rk)−1 sends (q, v)
to (q, A(q)−1 ·v), which is smooth as well (we use here that the map GL(k,R) → GL(k,R)
sending a matrix to its inverse is smooth). Therefore, Ψ|V×Rk : V × Rk → π−1(V ) is a
diffeomorphism, as desired.

In conclusion, Ψ is a bijective local diffeomorphism, and hence a global diffeomor-
phism by [Exercise Sheet 6, Exercise 4(f)]. It is now straightforward to check that
Φ = Ψ−1 : π−1(U) → U × Rk is a smooth local trivialization of E over U such that
the given smooth local frame (σi) is associated with Φ.

(c) Recall that E is smoothly trivial if and only if it admits a smooth global trivialization.
Thus, E is smoothly trivial if and only if it admits a smooth global frame by (a) and (b).

Assume now that E is a smooth vector bundle of rank k = 1 over M . Then E is
smoothly trivial if and only if it admits a smooth global frame. Such a frame consists of
a single smooth global section σ : M → E with the property that for each p ∈ M , the
element σ(p) ∈ Ep is a basis of the 1-dimensional R-vector space Ep, and hence σ(p) ̸= 0.
Conversely, every smooth global section σ : M → E of E such that σ(p) ∈ Ep \ {0}
determines a smooth global frame for E. In conclusion, the smooth line bundle E → M
is smoothly trivial if and only if it admits a nowhere vanishing smooth global section.

(d) By part (b), there exists a smooth local trivialization Φ: π−1(U) → U × Rk such
that (σi) is associated with Φ. In particular, we have

(
Φ ◦ σi

)
(q) = (q, ei) for all q ∈ U ,

where e1, . . . , ek is the standard basis of Rk. Now let ψ : π−1(U) → φ(U) × Rk be the
composition ψ = (φ×IdRk)◦Φ, where φ×IdRk : U×Rk → φ(U)×Rk is defined by applying
φ on U and IdRk on Rk. Note that ψ is a diffeomorphism as both Φ and φ × IdRk are
diffeomorphisms. To see how ψ acts on the points of π−1(U), let e ∈ π−1(U) be arbitrary,
and set q = π(e) ∈ U . As σ1(q), . . . , σk(q) is a basis of Eq, there exist real numbers
v1, . . . , vk such that e = viσi(q). As

(
Φ ◦ σi

)
(q) = (q, ei), we obtain Φ(e) = (q, (vi)),

so ψ(e) =
(
φ(q), (vi)

)
. Therefore, ψ = φ̃. As ψ is a diffeomorphism, this proves that(

π−1(U), φ̃
)
is a smooth coordinate chart for E.

Remark. By arguing as in the solution to Exercise 3(a)(b) – essentially by replacing the
words “smooth” with “continuous” and “diffeomorphism” with “homeomorphism” – one
can also show that, more generally, there is a correspondence between (continuous) local
frames and (continuous) local trivializations for any (topological) vector bundle. This
allows one to prove the topological case of Proposition 6.14 with an essentially identical
argument to the smooth case (which was treated in the lecture).

11



Exercise 6 (Uniqueness of the smooth structure on TM): LetM be a smooth n-manifold.
Show that the topology and smooth structure on the tangent bundle TM constructed in
Proposition 3.12 are the unique ones with respect to which π : TM →M is a smooth vec-
tor bundle with the given vector space structure on the fibers, and such that all coordinate
vector fields are smooth local sections.

[Hint: Use Exercise 5(d).]

Solution: Denote by (TM)′ a smooth manifold with underlying set TM =
⊔

p∈M TpM ,
but with possibly different topology and smooth structure than the usual tangent bundle
TM , such that the map π′ : (TM)′ → M , sending v ∈ TpM to p ∈ M , gives (TM)′ the
structure of a smooth vector bundle over M such that all the coordinate vector fields are
smooth local sections. (Note that, as set-theoretic maps, π and π′ are the same, but we
denote them differently to emphasize that their source may have different topology and
smooth structure.) By assumption, if

(
U, (x1, . . . , xn)

)
is a smooth chart for M , then the

maps

∂

∂xi
: U → (TM)′

p 7→ ∂

∂xi

∣∣∣∣
p

are smooth local sections of π′. Since for every p ∈ U the vectors ∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p
form a

basis of TpM , it follows that
(

∂
∂xi

∣∣
p

)
1≤i≤n

is a smooth local frame for (TM)′, and according

to Exercise 5(d), the map

φ̃ : (π′)−1(U) → φ(U)× Rn(
p, vi

∂

∂xi

∣∣∣∣
p

)
7→
(
φ(p), v1, . . . , vn

)
is a smooth chart for (TM)′. But the same holds for TM (as we saw in the proof of
Proposition 3.12 ). It follows that the identity map TM → (TM)′ is a diffeomorphism.
In particular, it is a homeomorphism, and thus also the topology agrees.

Remark. We somewhat used in Exercise 6 that the smooth structure actually determines
the topology. That is, we have the following:

Let M be a set and let T and T ′ be two topologies on M , both endowing it with
the structure of a topological manifold. Supposed that A is an atlas for both topologies,
such that both (M, T ,A) and (M, T ′,A) are smooth manifolds. Then T = T ′. Indeed,
the identity IdM : (M, T ,A) → (M, T ′,A) is smooth, as we have the same atlas on both
sides; in particular, it is continuous, so T ′ ⊆ T . A symmetric argument also shows that
the reverse inclusion holds. Therefore, T = T ′, as claimed.
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