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Exercise Sheet 9 – Solutions

Exercise 1: Let M be a smooth manifold. Show that if S is an embedded submanifold of
M , then the subspace topology on S and the smooth structure on S described in Theorem
5.6 are the only topology and smooth structure with respect to which S is an embedded
(or immersed) submanifold.

[Hint: Use [Exercise Sheet 8, Exercise 5(c)].]

Solution: Consider some other topology and smooth structure on S, denote by S̃ the
resulting smooth manifold, and suppose that ι̃ : S̃ ↪→ M is a smooth immersion. (For
the exercise as stated, one can suppose that ι̃ is a smooth embedding, but the weaker
assumption that it is a smooth immersion is actually sufficient). By [Exercise Sheet 8,

Exercise 5(c)] we infer that the corestriction ι̃|S : S̃ → S is smooth as well. If we denote

by ι : S ↪→ M the inclusion of S into M , then we have ι ◦
(
ι̃|S

)
= ι̃, so given p ∈ S̃, by

taking differentials we obtain
dιp ◦ d

(
ι̃|S

)
p
= dι̃p.

Since dιp and dι̃p are injective, we deduce that d
(
ι̃|S

)
p
is injective as well. Hence, ι̃|S is a

smooth immersion, and as it is also bijective, by the Global Rank Theorem we conclude
that ι̃|S is a diffeomorphism. Since it is the identity on the underlying set S, we deduce

that the topology and smooth structure of S̃ are identical to the ones of S.

Remark. Thanks to this uniqueness result, we now know that a subset S ⊆ M is an
embedded submanifold if and only if it satisfies the local slice condition, and if so, its
topology and smooth structure are uniquely determined. Because the local slice condition
is a local condition, if every point p ∈ S has a neighborhood U ⊆ M such that U ∩ S is
an embedded k-submanifold of U , then S is an embedded k-submanifold of M .

Exercise 2: Let M be a smooth manifold. Show that if S is an immersed submanifold
of M , then for the given topology on S, there exists only one smooth structure making S
into an immersed submanifold.

[Hint: Use [Exercise Sheet 8, Exercise 5(b)].]
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Solution: Denote by ι the inclusion map S ↪→ M of the immersed submanifold S of
M and by S̃ the topological space S endowed now with another smooth structure such
that the inclusion map ι̃ : S̃ ↪→ M is a smooth immersion. Note that S̃ is an immersed
submanifold of M . Since S and S̃ have the same topology by assumption, both maps
ι : S → S̃ and ι̃ : S̃ → S are continuous, and hence smooth by [Exercise Sheet 8, Exercise

5(b)], so they are inverses of each other. Therefore, S is diffeomorphic to S̃.

Remark. It is certainly possible for a given subset S of a smooth manifold M to have
more than one topology making it into an immersed submanifold of M . However, for
weakly embedded submanifolds we have the following uniqueness result, which can be
proved similarly to Exercise 2: If M is a smooth manifold and if S is a weakly embedded
submanifold of M , then S has only one topology and smooth structure with respect to
which it is an immersed submanifold of M .

Exercise 3:

(a) Let M be a smooth manifold, let S ⊆ M be an immersed or embedded submanifold,
and let p ∈ S. Show that a vector v ∈ TpM is in TpS if and only if there exists a
smooth curve γ : J → M whose image is contained in S, and which is also smooth as
a map into S, such that 0 ∈ J , γ(0) = p and γ′(0) = v.

(b) Let M be a smooth manifold, let S ⊆ M be an embedded submanifold and let
γ : J → M be a smooth curve whose image happens to lie in S. Show that γ′(t) is in
the subspace Tγ(t)S of Tγ(t)M .

Solution:

(a) Assume that the given vector v ∈ TpM lies also in TpS, which is identified with
dιp(TpS), so that v = dιp(w) for some w ∈ TpS. By [Exercise Sheet 4, Exercise 5(a)] there
exists a smooth curve γ : J → S such that 0 ∈ J , γ(0) = p and γ′(0) = w. Since S is an
immersed (or embedded) submanifold of M , the inclusion map ι : S ↪→ M is a smooth
immersion, so the composite map ι ◦ γ : J → M is a smooth curve in M whose image
is clearly contained in S, it satisfies 0 ∈ J , (ι ◦ γ)(0) = p, and additionally by [Exercise
Sheet 4, Exercise 5(b)] we have

(ι ◦ γ)′(0) = dιγ(0)
(
γ′(0)

)
= dιp(w) = v.

The converse follows immediately from [Exercise Sheet 4, Exercise 5(a)] taking the
identification of TpS with dιp(TpS) into account.

(b) By assumption and by [Exercise Sheet 8, Exercise 5(c)] the given map γ is also smooth
as a map from J to S, so the statement follows immediately from part (a).

Remark. If S ⊆ M is merely immersed, then the conclusion of Exercise 3(b) is not true
in general. Indeed, here is a counterexample:

Consider the smooth map

β : (−π, π) → R2, t 7→ (sin 2t, sin t).
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According to Example 4.5 (2), Proposition 5.13 and Exercise 5(a) below, its image S :=
β
(
−π, π

)
, the figure-eight curve, is an immersed but not embedded submanifold of R2.

Observe that β(0) = (0, 0) and that

dβ0

(
d

dt

∣∣∣∣
t=0

)
= 2 cos(0)

∂

∂x

∣∣∣∣
(0,0)

+ cos(0)
∂

∂y

∣∣∣∣
(0,0)

= 2
∂

∂x

∣∣∣∣
(0,0)

+
∂

∂y

∣∣∣∣
(0,0)

.

Since β : (−π, π) → S is a diffeomorphism, the tangent vector 2 ∂
∂x

∣∣
(0,0)

+ ∂
∂y

∣∣
(0,0)

constitutes

a basis for T(0,0)S. Consider now the smooth map

γ : (−π, π) → R2, t 7→ (sin 2t, − sin t)

and observe that its image lies in S. Moreover, γ(0) = (0, 0) and we have

dγ0

(
d

dt

∣∣∣∣
t=0

)
= 2

∂

∂x

∣∣∣∣
(0,0)

− ∂

∂y

∣∣∣∣
(0,0)

,

which clearly does not lie in the subspace T(0,0)S of T(0,0)R2.
Finally, note that the same (counter)example shows that the characterization of TpS

given in Proposition 5.19 does not work in the merely immersed case.

Exercise 4:

(a) Let M be a smooth manifold and let S ⊆ M be an embedded submanifold. Show
that if Φ : U → N is a local defining map for S, then it holds that

TpS ∼= ker
(
dΦp : TpM → TΦ(p)N

)
for every p ∈ S ∩ U.

(b) Let M be a smooth manifold. Suppose that S ⊆ M is a level set of a smooth
submersion Φ = (Φ1, . . . , Φk) : M → Rk. Show that a vector v ∈ TpM is tangent to S
if and only if vΦ1 = . . . = vΦk = 0.

Solution:

(a) Recall that we identify TpS with its image dιp(TpS) ⊆ TpM , where ι : S ↪→ M is the
inclusion map, which is a smooth embedding by assumption. Note that by hypothesis
we have S ∩ U = Φ−1(q) for some q ∈ N . Therefore, we have Φ ◦ ι|S∩U = cq, where
cq : S ∩ U → N is the constant map on S ∩ U with value q ∈ N . Thus, if p ∈ S ∩ U is
arbitrary, then

0 = d(cq)p = dΦp ◦ d(ι|S∩U)p.

Hence, the differential d(ι|S∩U)p induces an injective map from TpS to ker dΦp (because ι
is an embedding).

In order to conclude, it suffices to show that both spaces have the same dimension.
Denote by m, n, s the dimension of M , N , S, respectively. By Corollary 5.10 the
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codimension of S in M is n (i.e., m − s = n). On the other hand, by the rank-nullity
theorem from linear algebra and by the surjectivity of dΦp we have

n = dim im dΦp = dimTpM︸ ︷︷ ︸
=m

− dimker dΦp

=⇒ dimker dΦp = m− n = s.

Hence, TpS and ker dΦp have the same dimension s, and are thus identified via dιp.

(b) Fix p ∈ S. By part (a) we know that v ∈ TpM is tangent to S if and only if dΦp(v) = 0.
Denote by pr1, . . . , prk : Rk → R the projection maps to the corresponding coordinates.
By the description of TpRk, note that a vector w ∈ TpRk is 0 if and only if w(pri) = 0 for
all 1 ≤ i ≤ k. Hence,

dΦp(v) = 0 ⇐⇒ dΦp(v)(pri) = 0, ∀1 ≤ i ≤ k ⇐⇒ v
(
pri ◦Φ

)
= vΦi = 0, ∀1 ≤ i ≤ k.

Exercise 5:

(a) Consider the smooth curve

β : (−π, π) → R2, t 7→ (sin 2t, sin t)

from Example 4.5 (2). Show that its image is not an embedded submanifold of R2.

(b) Consider the smooth function

Φ: R2 → R, (x, y) 7→ x2 − y2.

Show that the level set Φ−1(0) is an immersed submanifold of R2.

(c) Consider the smooth function

Ψ: R2 → R, (x, y) 7→ x2 − y3.

Show that the level set Ψ−1(0) is not an immersed submanifold of R2.

[Hint: Argue by contradiction and use Exercise 3(a).]

Solution:

(a) Endowed with the subspace topology inherited from R2, the image of β (which has
been plotted below) is not a topological manifold. Indeed, essentially the same argument
as the one presented in the solution of [Exercise Sheet 1, Exercise 4] shows that β(−π, π)
is not locally Euclidean at the (self-intersection) point (0, 0) ∈ β(−π, π). Therefore, the
image of β cannot be an embedded submanifold of R2.
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(b) The level set

Φ−1(0) =
{
(x, y) ∈ R2 | x2 − y2 = 0

}
=

{
(x, y) ∈ R2 | (y − x)(y + x) = 0

}
has been plotted below.

Even though it is not an embedded submanifold of R2, as already demonstrated in the
solution of [Exercise Sheet 8, Exercise 3(b)], we will show that Φ−1(0) is the image of
an injective smooth immersion, and hence Φ−1(0) can be given a topology and smooth
structure making it into an immersed submanifold of R2; see Proposition 5.13.

Recall that the problem lies at the point where the two lines cross, which is the origin
in our case. The idea is to view Φ−1(0) as the disjoint union of two lines (where we
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remove the origin from one of them). To make this precise, let us start with a general
construction for smooth manifolds, namely the disjoint union.

For i ∈ {0, 1}, let (Mi, Ti,Ai) be a smooth manifold, and assume that both of them
have the same dimension. The set theoretic disjoint union of M0 and M1 is the set

M0 ⊔M1 :=
{
(m, i) | i ∈ {0, 1}, m ∈ Mi

}
.

We can endow the set M0 ⊔ M1 with a natural topology T , called the disjoint union
topology as follows. For each i ∈ {0, 1}, denote by ιi the natural inclusion

ιi : Mi → M0 ⊔M1

m 7→ (m, i)

and define T by

T :=
{
U ⊆ M0 ⊔M1 | ∀i ∈ {0, 1} : ι−1

i (U) ∈ Ti

}
.

It is straightforward to check that T is a topology on M0 ⊔M1, and in fact it is the finest
topology on M0 ⊔ M1 for which the inclusions ιi are continuous. Furthermore, one can
observe that ιi is an open map, and as it is injective, ιi is a homeomorphism onto the
open subset ιi(Mi) of M0 ⊔M1. Therefore, we can identify (Mi, Ti) with ιi(Mi) endowed
with the subspace topology (note also that the open subsets of M0 ⊔ M1 are precisely
the subsets of the form ι0(U0) ∪ ι1(U1) where U0 ⊆ M0 resp. U1 ⊆ M1 are open). In
particular, M0 ⊔ M1 is locally Euclidean and second countable, since we have the open
cover M0 ⊔ M1 = ι0(M0) ∪ ι1(M1), where both open subsets are locally Euclidean and
second countable. Finally, M0 ⊔M1 is also Hausdorff, because if (m, i), (n, j) are distinct
elements of M0⊔M1, then either i ̸= j, in which case they can be separated by the disjoint
open subsets ιi(Mi) and ιj(Mj), or we have i = j, in which case there exist disjoint open
subsets U, V ⊆ Mi with m ∈ U and n ∈ V , so that (m, i) and (n, i) are separated by ιi(U)
and ιi(V ).

In conclusion, (M0 ⊔ M1, T ) is a topological manifold. Let us now endow it with a
smooth structure. As ιi is an open injection, we can consider the following collection
ιi,∗(Ai) of charts on M0 ⊔M1:

ιi,∗(Ai) :=
{(

ιi(U), φ ◦ ι−1
i

)
| (U,φ) ∈ Ai

}
, i ∈ {0, 1}.

It is straightforward to check that ι0,∗(A0) ∪ ι1,∗(A1) is a smoothly compatible atlas on
M0 ⊔M1, and therefore induces a smooth structure A on M0 ⊔M1 by Proposition 1.8 (a).
As a final remark on this abstract construction, note that ιi is a diffeomorphism onto the
open subset ιi(Mi) of M0⊔M1. This essentially follows from the fact that for any smooth
chart (U,φ) on Mi we have the smooth chart

(
ιi(U), φ ◦ ι−1

i

)
on M0 ⊔M1.

With this construction at hand, it is straightforward to solve the exercise. Consider
M0 = R and M1 = R \ {0}, both endowed with the standard smooth structure. Let
M = M0 ⊔M1 be the smooth manifold which is their disjoint union. Consider the map

F : M → R2

(m, i) 7→
(
m, (−1)im

)
.
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Notice that F ◦ ι0 : R → R2 is the map x 7→ (x, x) and F ◦ ι1 : R \ {0} → R2 is the map
x 7→ (x,−x), and that both of these maps are smooth embeddings. As being continuous
resp. smooth resp. a smooth immersion can be checked on an open cover, and ιi are
diffeomorphisms, we conclude at once that F is continuous, smooth, and even a smooth
immersion. Observe also that F is injective. Therefore, by Proposition 5.13 the image
Φ−1(0) = F (M) is an immersed submanifold of R2.

(c) The level set
Ψ−1(0) =

{
(x, y) ∈ R2 | x2 − y3 = 0

}
has been plotted below.

We assume that Ψ−1(0) can be given a topology and smooth structure making it into an
immersed submanifold of R2 and we will derive a contradiction using Exercise 3(a). To this
end, observe that Ψ−1(0) must be 1-dimensional; indeed, Ψ−1(0)\{(0, 0)} is an embedded
1-submanifold of R2, as its two connected components, corresponding to (x, y) ∈ Φ−1(0)
with x < 0 (the left branch) and (x, y) ∈ Φ−1(0) with x > 0 (the right branch), are the

graphs of the smooth functions x ∈ (−∞, 0) 7→ x
2
3 and x ∈ (0,+∞) 7→ x

2
3 , respectively.

Therefore, T(0,0)Φ
−1(0) is a 1-dimensional subspace of T(0,0)R2 ∼= R2, so by Exercise 3(a)

there exists a smooth curve γ : (−ε, ε) → R2 whose image lies in Φ−1(0) and which satisfies
γ(0) = (0, 0) and γ′(0) ̸= 0. Writing γ(t) =

(
x(t), y(t)

)
, we see that y(t) takes a global

minimum at t = 0, so y′(0) = 0. On the other hand, since γ(t) ∈ Φ−1(0) for every
t ∈ (−ε, ε), we have x2(t) = y3(t) for every t ∈ (−ε, ε). Differentiating twice and setting
t = 0, we obtain x′(0) = 0, and since y′(0) = 0, we conclude that γ′(0) = 0, which is a
contradiction. Hence, Ψ−1(0) is not an immersed submanifold of R2.

Remark. Here are a few remarks on the above solution to Exercise 5(b).

• One could perform the construction of M0 ⊔ M1 a bit more concretely: if M0 ⊆
Rn and M1 ⊆ Rn are given as embedded submanifolds of Rn, then it is more or
less straightforward to see that (M0 × {0}) ∪ (M1 × {1}) ⊆ Rn+1 is an embedded
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submanifold of Rn+1. The abstract disjoint union M0 ⊔M1 is then diffeomorphic to
(M0 × {0}) ∪ (M1 × {1}) via the obvious map.

In our example where M0 = R and M1 = R \ {0}, this shows that M0 ⊔ M1 is
diffeomorphic to the embedded submanifold

{(x, 0) | x ∈ R} ∪ {(x, 1) | x ∈ R \ {0}} ⊆ R2.

However, conceptually it is cleaner to argue just with the abstract disjoint union
M0 ⊔M1.

• The abstract disjoint union has a universal property, similar to the universal prop-
erty of a product: for all smooth manifolds N and all smooth maps f0 : M0 → N
and f1 : M1 → N , there exists a unique smooth map f : M0 ⊔ M1 → N such that
f ◦ ιi = fi for all i. In fact, for those who are familiar with the language of category
theory, the disjoint union is the coproduct in the category of smooth manifolds.

• By Proposition 5.13, there is a topology and smooth structure on F (M) making it
an immersed submanifold of R2. The topology is given by

T =
{
F (U) | U ⊆ M open

}
.

This is a strictly finer topology on F (M) than the subspace topology. Indeed,
by Proposition 5.13, the map (F (M), T ) → R2 is continuous, so T contains the
subspace topology. On the other hand, we have F

(
ι0(M0)

)
∈ T , but

F
(
ι0(M0)

)
=

{
(x, x) | x ∈ R

}
,

which is not open in the subspace topology on F (M) (otherwise it would have to
contain F (M) ∩B(0, ε) for ε sufficiently small, which is certainly false).

• This exercise also demonstrates that the topology and smooth structure on an im-
mersed manifold might not be unique (cf. Exercise 2). Indeed, the map

G : M → R2

(m, i) 7→
(
m, (−1)i+1m

)
is also an injective smooth immersion with image Φ−1(0), and therefore induces a
topology and smooth structure on Φ−1(0) making it an immersed submanifold of
R2; see Proposition 5.13. But you can check that it is different from the one induced
by F .

Exercise 6: For each a ∈ R, consider the set

Ma :=
{
(x, y) ∈ R2 | y2 = x(x− 1)(x− a)

}
⊆ R2.

For which values of a is Ma an embedded submanifold of R2? For which values of a can
Ma be given a topology and a smooth structure making it into an immersed submanifold?

[Hint: To answer the second question, for each “singular” value of the parameter a ∈ R
it is quite useful to plot the corresponding curve Ma ⊆ R2 in order to get some geometric
insights. In particular, for one of those “singular” values of a ∈ R, it might also be
helpful to consider the parametrized curve γ(t) = (t2, t3 − t) with an appropriate domain
of definition I ⊆ R.]
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Solution: For each a ∈ R, consider the function

Φa : R2 → R, (x, y) 7→ y2 − x(x− 1)(x− a)

and observe that Ma = Φ−1
a (0). The gradient of Φa at an arbitrary point (x, y) ∈ R2 is

given by
grad(Φa)(x, y) =

(
− 3x2 + 2(a+ 1)x− a, 2y

)
.

Therefore, grad(Φa)(x, y) = (0, 0) for some (x, y) ∈ R2 if and only if y = 0 and x ∈ R
satisfies the following system:

(Σ) :

{
u3 − (a+ 1)u2 + au = 0

3u2 − 2(a+ 1)u+ a = 0.

One can now check that the pairs (u, a) ∈
{
(0, 0), (1, 1)

}
are the solutions of (Σ).

In conclusion, if a ∈ R \ {0, 1}, then 0 ∈ R is a regular value of Φa, so Ma = Φ−1
a (0)

is a properly embedded submanifold of R2 by Corollary 5.10, whereas if a ∈ {0, 1}, then
grad(Φ0)(0, 0) = (0, 0) and grad(Φ1)(1, 0) = (0, 0), so Corollary 5.10 cannot be applied;
we will address those two cases separately below.

For instance, the curves

M2 = Φ−1
2 (0) =

{
(x, y) ∈ R2 | y2 = x(x− 1)(x− 2)

}
and

M−3 = Φ−1
−3(0) =

{
(x, y) ∈ R2 | y2 = x(x− 1)(x+ 3)

}
have been plotted below in yellow and purple, respectively.

Next, we deal with the set

M0 = Φ−1
0 (0) =

{
(x, y) ∈ R2 | y2 = x2(x− 1)

}
,

which has been plotted below.
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We observe that (0, 0) ∈ R2 is an isolated point of M0. Therefore, M0 cannot be an
immersed or embedded submanifold of R2 (simply because we do not consider spaces of
mixed dimension as manifolds).

Finally, we deal with the set

M1 = Φ−1
1 (0) =

{
(x, y) ∈ R2 | y2 = x(x− 1)2

}
,

which has been plotted below.

Observe that the “curve” M1 has a self-intersection, so it cannot be an embedded sub-
manifold of R2; see the solution of [Exercise Sheet 8, Exercise 3(b)] for a similar argument.
However, we can make M1 an immersed submanifold of R2 by giving it an appropriate
topology in which it is disconnected; see the solution of Exercise 5(b) for a similar idea.
To this end, consider the smooth curve

γ : R \ {−1} → R2, t 7→ (t2, t3 − t)
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and observe that its image is the set M1 ⊆ R2. Note that γ is a smooth immersion by
Example 4.4 (1), since

γ′(t) = (2t, 3t2 − 1) ̸= 0 for every t ∈ R \ {1}.

It is also injective, since
γ(t1) = γ(t2) =⇒ t1 = ±t2

and if t1 = −t2, then either t1 = 0 = −t2 or t1 = ±1 = −t2 (which is why we have
excluded, for instance, t = −1 from the domain of definition of γ, which would also
get mapped to the point (1, 0) ∈ M1 ⊆ R2). It follows from Proposition 5.13 that
M1 = γ

(
R \ {−1}

)
is an immersed submanifold of R2.
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