EPFL – Automne 2025	S. Basterrechea
Analyse I – CGC, EL, MX	Exercices
Série 6	27 octobre 2025

Exercice 1.

Soient deux suites réelles (x_n) et (a_n) . Démontrer à l'aide du théorème des deux gendarmes, que

si
$$\begin{cases} |x_n| \le a_n, & \forall n \ge n_0, \\ \lim_{n \to \infty} a_n = 0 \end{cases}$$
 alors $\lim_{n \to \infty} x_n = 0,$

où n_0 est un certain entier positif.

Solution.

Pour tout $n \geq n_0$, nous pouvons reécrire l'inégalité

$$|x_n| \le a_n \quad \Leftrightarrow \quad -a_n \le x_n \le a_n.$$

Puisque $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (-a_n) = 0$, nous concluons immédiatement avec le théorème des deux gendarmes que $\lim_{n\to\infty} x_n = 0$.

Exercice 2.

Soit $a_n = \frac{3n}{n+2}$ pour $n \in \mathbb{N}^*$. Calculer

a)
$$\lim_{n \to \infty} a_n$$
 b) $\lim_{n \to \infty} \frac{1}{a_n}$ c) $\lim_{n \to \infty} \left(\frac{a_n}{3} + \frac{3}{a_n}\right)$

Solution.

a) En utilisant les règles de calcul des limites,
$$\lim_{n\to\infty}\frac{3n}{n+2}=\lim_{n\to\infty}\frac{3}{1+\frac{2}{n}}=\frac{3}{1+2\lim_{n\to\infty}\frac{1}{n}}=\frac{3}{1+2\cdot 0}=3\ .$$

b) Vu que
$$\lim_{n \to \infty} a_n \neq 0$$
, $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{\lim_{n \to \infty} a_n} = \frac{1}{3}$.

c) Vu que
$$\lim_{n\to\infty} a_n \neq 0$$
, $\lim_{n\to\infty} \left(\frac{a_n}{3} + \frac{3}{a_n}\right) = \frac{1}{3} \lim_{n\to\infty} a_n + \frac{3}{\lim_{n\to\infty} a_n} = \frac{1}{3} \cdot 3 + \frac{3}{3} = 2$.

Exercice 3.

Déterminer, si elle existe, la limite $n \to \infty$ de la suite $(a_n)_{n \ge 1}$ avec

a)
$$a_n = (-1)^n \frac{\sqrt[4]{n}}{\sqrt[3]{n}}$$

b) $a_n = \frac{1}{2^n}$
c) $a_n = e^n$
d) $a_n = e^{-n}$
e) $a_n = \frac{\sin(n+1) - \sin(n-1)}{\cos(n+1) + \cos(n-1)}$
f) $a_n = 3^n e^{-3n}$
g) $a_n = \frac{5n^2 - 3n + 2}{3n^2 + 7}$
h) $a_n = \sin(\frac{1}{n})$
i) $a_n = n \sin(\frac{2n+3}{n^3})$

<u>Indication</u>: on pourra utiliser, sans démonstration, que $\forall x \in \mathbb{R}$, $|\sin(x)| \leq |x|$.

Solution.

- a) Nous pouvons reécrire la suite $a_n = (-1)^n n^{\frac{1}{4} \frac{1}{3}} = (-1)^n \frac{1}{n^{\frac{1}{12}}}$. Par l'exercice 5 (c) de la série 5 (avec $p = \frac{1}{12}$), la suite converge vers 0.
- b) Remarquons que $1/2^n=(1/2)^n$. La suite est donc de la forme q^n avec q=1/2=0.5<1. Il s'en suit que $\lim_{n\to\infty}\frac{1}{2^n}=0$.
- c) La suite est de la forme q^n avec q = e > 1. Il s'en suit que $\lim_{n \to \infty} e^n = +\infty$.
- d) Remarquons que $e^{-n} = (1/e)^n$, ainsi la suite est de la forme q^n avec q = 1/e < 1. Il s'en suit que $\lim_{n \to \infty} e^{-n} = 0$.
- e) En utilisant les formules trigonométriques adéquates on a

$$\lim_{n \to \infty} \frac{\sin(n+1) - \sin(n-1)}{\cos(n+1) + \cos(n-1)} = \lim_{n \to \infty} \frac{2\cos(n)\sin(1)}{2\cos(n)\cos(1)} = \tan(1) .$$

- f) Puisque $3^n e^{-3n} = q^n$, avec $q = \frac{3}{e^3} = 0.14936... < 1$, il s'en suit que $\lim_{n \to \infty} 3^n e^{-3n} = 0$.
- g) Par les propriétés algébriques de la limite, on a

$$\lim_{n \to \infty} \frac{5n^2 - 3n + 2}{3n^2 + 7} = \lim_{n \to \infty} \frac{5 - \frac{3}{n} + \frac{2}{n^2}}{3 + \frac{7}{n^2}} = \frac{5 - 3 \lim_{n \to \infty} \frac{1}{n} + 2 \lim_{n \to \infty} \frac{1}{n^2}}{3 + 7 \cdot \lim_{n \to \infty} \frac{1}{n^2}} = \frac{5}{3}.$$

h) Par la deuxième indication, on a que

$$0 \le \left| \sin \left(\frac{1}{n} \right) \right| \le \left| \frac{1}{n} \right| = \frac{1}{n}.$$

Vu que $\lim_{n\to\infty}\frac{1}{n}=0$, alors par l'exercice 1,

$$\lim_{n \to \infty} \sin\left(\frac{1}{n}\right) = 0 \ .$$

i) Par la deuxième indication, on a que

$$\left| n \sin\left(\frac{2n+3}{n^3}\right) \right| \le n\left(\frac{2n+3}{n^3}\right) = \frac{2n+3}{n^2} .$$

Vu que

$$\lim_{n\to\infty}\frac{2n+3}{n^2}=\lim_{n\to\infty}\frac{1}{n}\left(2+\frac{3}{n}\right)=0\ ,$$

alors par l'exercice 1,

$$\lim_{n \to \infty} n \sin\left(\frac{2n+3}{n^3}\right) = 0.$$

j) En appliquant le critère de d'Alembert, on a que

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} \right| = \lim_{n \to \infty} \frac{2^{n+1}}{2^n} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{2}{n+1} = 0.$$

Comme $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, la suite (a_n) converge vers θ .

Exercice 4.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite numérique.

Vrai ou faux?

- a) Si (a_n) est bornée, alors (a_n) converge.
- b) Toute suite décroissante converge.
- c) Toute suite négative et croissante converge.
- d) Si $a_n > 0$ pour tout $n \in \mathbb{N}$ et (a_n) converge vers a, alors a > 0.
- e) Si (a_n) converge, alors $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$.
- f) Si $\lim_{n \to \infty} a_n = 0$, alors $\lim_{n \to \infty} (a_n \sin(n)) = 0$.
- g) Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, alors (a_n) diverge.
- h) Si $\lim_{n\to\infty} |a_{n+1}-a_n|=0$, alors (a_n) est une suite bornée.

Solution.

a) FAUX.

Prendre par exemple $a_n = (-1)^n$ pour tout $n \in \mathbb{N}$. Alors les termes de a_n alternent entre -1 et 1, ce qui fait que (a_n) est bornée mais ne converge pas.

b) FAUX.

On peut prendre $a_n = -n$ pour tout $n \in \mathbb{N}$. Cette suite est décroissante, mais elle ne converge pas.

c) VRAI.

La suite est croissante et majorée par 0 (car négative). Par le critère des suites monotones et bornées, la suite converge.

d) FAUX.

On peut prendre $a_n = \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$. On a $a_n > 0$; par contre $\lim_{n \to +\infty} a_n = 0$.

e) FAUX.

On peut prendre a_n une suite constante. Elle converge, mais $\left|\frac{a_{n+1}}{a_n}\right|=1\to 1$.

f) VRAI.

Comme $|\sin(n)| \leq 1$ pour tout $n \in \mathbb{N}$, on a

$$0 \le |a_n \sin(n)| = |a_n| \cdot |\sin(n)| \le |a_n|,$$

d'o \acute{u}

$$-|a_n| \le a_n \sin(n) \le |a_n|. \tag{1}$$

Puisque $\lim_{n\to\infty} a_n = 0$, la suite des valeurs absolues ($|a_n|$) converge aussi vers 0. En effet, soit $\epsilon > 0$. Alors, par la convergence de (a_n) , il existe $n_0 \in \mathbb{N}$ tel que

$$|a_n - 0| = |a_n| = ||a_n| - 0| < \epsilon$$

pour tout $n \ge n_0$, ce qui établit que $\lim_{n \to \infty} |a_n| = 0$. Par le théorème des deux gendarmes appliqué à (1), on conclut alors que $\lim_{n \to \infty} (a_n \sin(n)) = 0$.

g) FAUX.

On peut reprendre une suite constante. Elle satisfait $\left|\frac{a_{n+1}}{a_n}\right| = 1 \to 1$, mais elle converge.

h) FAUX.

Prendre par exemple $a_n = \sqrt{n}$ pour tout $n \in \mathbb{N}$. Alors

$$|a_{n+1} - a_n| = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

converge vers 0, mais (a_n) n'est évidemment pas bornée, car $\lim_{n\to\infty} a_n = +\infty$.

Exercice 5.

En utilisant la technique du conjugué

$$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}} \quad \forall x, y \in \mathbb{R}^+$$

calculer les limites suivantes :

a)
$$\lim_{n \to \infty} \sqrt{n+2} - \sqrt{n}$$

c)
$$\lim_{n \to \infty} \sqrt{2n^2 + 3} - \sqrt{(2n+1)(n+4)}$$

b)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 2} - \sqrt{n^2 + 3}}{5}$$

d)
$$\lim_{n \to \infty} \sqrt{n} (\sqrt{n^3 + 2n} - \sqrt{n^3 + 4})$$

<u>Indication</u>: on pourra utiliser, sans démonstration, que si (x_n) est telle que pour tout $n, x_n \ge 0$ et $\lim_{n\to\infty} x_n = l$, alors $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{l}$. On le démontrera dans le Chapitre 5.

Solution.

a) On a

$$\begin{split} l &:= \lim_{n \to \infty} \sqrt{n+2} - \sqrt{n} \\ &= \lim_{n \to \infty} \frac{n+2-n}{\sqrt{n+2} + \sqrt{n}} \\ &= \lim_{n \to \infty} \frac{2}{\sqrt{n+2} + \sqrt{n}} \\ &= \lim_{n \to \infty} \left(\frac{2}{\sqrt{n}}\right) \left(\frac{1}{\sqrt{1+2/n} + \sqrt{1}}\right) = 0 \ . \end{split}$$

b) On a

$$\begin{split} l := & \lim_{n \to \infty} \frac{\sqrt{n^2 + 2} - \sqrt{n^2 + 3}}{5} \\ = & \lim_{n \to \infty} \frac{n^2 + 2 - (n^2 + 3)}{5(\sqrt{n^2 + 2} + \sqrt{n^2 + 3})} \\ = & \lim_{n \to \infty} \frac{-1}{5(\sqrt{n^2 + 2} + \sqrt{n^2 + 3})} \\ = & \lim_{n \to \infty} \left(\frac{1}{n}\right) \left(\frac{-1}{5(\sqrt{1 + 2/n^2} + \sqrt{1 + 3/n^2})}\right) = 0 \ . \end{split}$$

c) On a

$$\begin{split} l &:= \lim_{n \to \infty} \sqrt{2n^2 + 3} - \sqrt{(2n+1)(n+4)} \\ &= \lim_{n \to \infty} \frac{2n^2 + 3 - (2n+1)(n+4)}{\sqrt{2n^2 + 3} + \sqrt{(2n+1)(n+4)}} \\ &= \lim_{n \to \infty} \frac{2n^2 + 3 - 2n^2 - 9n - 4}{\sqrt{2n^2 + 3} + \sqrt{(2n+1)(n+4)}} \\ &= \lim_{n \to \infty} \frac{-9n - 1}{\sqrt{2n^2 + 3} + \sqrt{(2n+1)(n+4)}} \\ &= \lim_{n \to \infty} \left(\frac{n}{n}\right) \left(\frac{-9 - 1/n}{\sqrt{2 + 3/n^2} + \sqrt{(2 + 1/n)(1 + 4/n)}}\right) = -\frac{9}{2\sqrt{2}} = -\frac{9\sqrt{2}}{4} \ . \end{split}$$

d) On a

$$\begin{split} l := & \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n^3 + 2n} - \sqrt{n^3 + 4} \right) \\ = & \lim_{n \to \infty} \sqrt{n} \left(\frac{n^3 + 2n - (n^3 + 4)}{\sqrt{n^3 + 2n} + \sqrt{n^3 + 4}} \right) \\ = & \lim_{n \to \infty} \sqrt{n} \left(\frac{2n - 4}{\sqrt{n^3 + 2n} + \sqrt{n^3 + 4}} \right) \\ = & \lim_{n \to \infty} \left(\frac{n\sqrt{n}}{n\sqrt{n}} \right) \left(\frac{2 - 4/n}{\sqrt{1 + 2/n^2} + \sqrt{1 + 4/n^3}} \right) = 1 \ . \end{split}$$

Exercices challenges.

Exercice 6.

Calculer $\lim_{n\to\infty} \frac{n!}{n^n}$.

<u>Indication</u>: on pourra utiliser, sans démonstration, que $\forall x \in \mathbb{R}$, $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$

Solution.

En appliquant le critère de d'Alembert, on a que

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} \right| = \frac{(n+1)!}{n!} \frac{n^n}{(n+1)^{n+1}} = (n+1) \frac{n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)^n} = \left(\frac{n}{n+1} \right)^n$$

Par la troisième indication, on sait que $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$. En posant x=-1 on a donc

$$\lim_{k \to \infty} \left(1 - \frac{1}{k} \right)^k = e^{-1}.$$

Or, en utilisant une feinte du $loup^{TM}$, on a

$$\left(\frac{k}{k+1}\right)^k = \left(\frac{k+1-1}{k+1}\right)^k = \left(1 - \frac{1}{k+1}\right)^k = \frac{\left(1 - \frac{1}{k+1}\right)^{k+1}}{1 - \frac{1}{k+1}} \to \frac{e^{-1}}{1} < 1$$

Finalement, on a que $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, ce qui implique que la suite (a_n) converge vers 0.

Exercice 7.

Démontrer que la limite d'une suite convergente est unique.

<u>Indication</u>: Supposer par l'absurde qu'une suite admet deux limites L_1 et L_2 distinctes et travailler avec $\varepsilon := |L_1 - L_2|$.

Solution.

Nous supposons par l'absurde qu'une suite a_n admet deux limites $L_1, L_2 \in \mathbb{R}$ distinctes. Posons

$$\varepsilon := |L_1 - L_2| \neq 0.$$

Alors par définition des limites, il existe $N_1, N_2 \in \mathbb{N}^*$ tels que

$$\left\{n \geq N_1 \quad \Longrightarrow \quad |a_n - L_1| < \frac{\varepsilon}{2}\right\} \quad et \quad \left\{n \geq N_2 \quad \Longrightarrow \quad |a_n - L_2| < \frac{\varepsilon}{2}\right\}.$$

Pour tout $n \ge \max\{N_1, N_2\}$, nous avons ainsi

$$\varepsilon = |L_1 - L_2| \le |L_1 - a_n + a_n - L_2| \le |L_1 - a_n| + |L_2 - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \epsilon.$$

Nous avons donc obtenu $\varepsilon < \varepsilon$ ce qui est absurde. Donc $L_1 = L_2$.