
Information, Computation, Communication

Learning Python

Loops – Part II

CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

Agenda

• enumerate()

• Nested loops

• Early exit or interrupting loops
• break

• continue

• Nested lists
• Matrices

• Nested list comprehension

Next: Midterm exam

CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic 2

Function Enumerate

3CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

enumerate()

• …is a built-in Python function that returns not only the element
of a list but also its corresponding index in the list

4CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

for index, value in enumerate(my_list): # traverse the list
do some computation involving index and/or value

E
X
A
M
P
L
E
S

Example: enumerate()

• Write a block of code that reads a list of days in the week and
outputs the index+1 and the value (a string) for each of the first
five days; you can assume that the list contains all weekdays

5CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

my_list = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]

for index, value in enumerate(my_list): # traverse the list

if index < 5: # focus on the first five elements
print(index + 1, value, end="; ") # print

Output:
1 Mon; 2 Tue; 3 Wed; 4 Thu; 5 Fri;

Nested Loops

CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic 6© kras99 / Adobe Stock

Nested Loops

• …are loops that contain other loops

• Example: Multiplication table

7CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

0, 1, 2, …, 9

0, 1, 2, …, 9

E
X
A
M
P
L
E
S

Example: Multiplication Table

Outer loop (row) increments row index r:

• r = 0
• Inner loop (column) increments c

• Inner c = 0, 1, 2, 3, …, 8, 9

• Output: (r+1) * (c+1)

• r = 1
• Inner c = 0, 1, 2, 3, …, 8, 9

• Output: (r+1) * (c+1)

…

• r = 9
• Inner c = 0, 1, 2, 3, …, 8, 9

• Output : (r+1) * (c+1)

8CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

c = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

E
X
A
M
P
L
E
S

Example: Multiplication Table

9CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

In
n

e
r

lo
o

p

O
u

te
r

lo
o

p

for r in range(10):

for c in range(10):

v = (r + 1) * (c + 1)
Print the result 'v', formatted to take up to 4 spaces
for alignment, and stay on the same line
print(f"{v:4}", end="")

Move to the next line after completing a row of the table
print()

© kras99 / Adobe Stock

Early Exit from Loops
• break

10CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Loops: Early Exit

• break keyword is used to
terminate the loop before
its end is due

• Can be used in while and for

• If used inside a nested loop, break
affects the closest of the loops

11CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

LOOP
CONDITION

CODE-TOP
break

CODE-BOTTOM

REMAINING
CODE

TRUE FALSE

Loops: Early Exit

12CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

while or for loop
while loop-again:

If loop-again is true,
repeat the loop
code-top

If should-exit-early is true,
end the loop
if should-exit-early:

break

code-bottom

LOOP
CONDITION

CODE-TOP
break

CODE-BOTTOM

REMAINING
CODE

TRUE FALSE

E
X
A
M
P
L
E
S

Example: Early Exit from Loops

Write code that reads the elements of an input list in_list, sorted in
increasing order, and copies them to the output list out_list.
Copying stops when a value larger than the threshold is encountered
in the input list or when the list is entirely copied.

Example: in_list = [9, 10, 14, 17, 25, 28, 29, 44, 46, 54, 56,
57, 59, 61, 64, 71, 74, 90, 94, 95]

threshold = 50

Output: out_list = [9, 10, 14, 17, 25, 28, 29, 44, 46]

Output list has 9 elements.

13CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example: Early Exit from Loops

14CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Create an empty list to store the output
out_list = []

Iterate through each element in the sorted input list
for elem in in_list:

Check if the current element exceeds the threshold
if elem > threshold:

If it does, exit the loop
break

out_list.append(elem) # copy

Print
print(out_list)
print(f"Output list has {len(out_list)} elements.")

© kras99 / Adobe Stock

Skipping Loop Iterations
• continue

15CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Loops: Skipping (Part of) an Iteration

• continue keyword is used to
interrupt the current loop iteration
and continue the loop by starting
the next iteration provided that
the loop condition is still True

• If used inside a nested loop,
continue affects the closest
of the loops

16CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

LOOP
CONDITION

CODE-TOP
continue

CODE-BOTTOM

REMAINING
CODE

TRUE FALSE

Loops: Skipping (Part of) an Iteration

17CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

LOOP
CONDITION

CODE-TOP
continue

CODE-BOTTOM

REMAINING
CODE

TRUE FALSE

while or for loop
while loop-again:

If loop-again is true,
repeat the loop
code-top

If should-skip is true,
skip code-bottom
if should-skip:

continue

code-bottom

E
X
A
M
P
L
E
S

Example: Skipping (Part of) an Iteration

Write code that copies only odd numbers from a list of numbers
in_list to an output list out_list, skipping over even numbers.

Example: in_list = [9, 10, 14, 17, 25, 28, 29, 44, 46, 54, 56,
57, 59, 61, 64, 71, 74, 90, 94, 95]

Output: out_list = [9, 17, 25, 29, 57, 59, 61, 71, 95]

18CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example: Skipping (Part of) an Iteration

Create an empty list to store the output

out_list = []

for num in in_list: # Iterate through the list of numbers

If the number is even, skip the remaining instructions

and move to the next iteration

if not (num % 2):

continue

If the number is odd, append it to the output list

out_list.append(num)

print(out_list)

19CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

Nested Lists
…and Matrices

20CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Nested Lists

• … are lists that contain other lists

• Nested lists are how we represent matrices, for example,
but they are not limited to two dimensions

21CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example: Creating a Matrix

• Write a block of code that creates a 5×5 matrix using a nested list,
such that each row contains values 0, 1, 2, 3, 4.

22CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

matrix = [] # Create an empty list
for row in range(5): # For every row

matrix.append([]) # Append an empty sublist to the list
for col in range(5): # For every column

matrix[row].append(col) # Append to the row

print(matrix)
Output:
[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4],

[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

E
X
A
M
P
L
E
S

Creating a Matrix using List Comprehension

• Write a block of code that creates a 5×5 matrix using a nested list,
such that each row contains values 0, 1, 2, 3, 4.

23CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Nested list comprehension
matrix = [[col for col in range(5)] for row in range(5)]

print(matrix)

Output:
[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4],

[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

E
X
A
M
P
L
E
S

Example: Filtering Matrices

• Write a block of code that traverses an input matrix and generates
a list of odd numbers found in the matrix.

Example: input matrix: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Output: output list: [1, 3, 5, 7, 9]

24CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example: Filtering Matrices

• Write a block of code that traverses an input matrix and generates
a list of odd numbers found in the matrix.

25CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
odd_numbers = []
Loop through each row in the matrix
for row in matrix:

Loop through each element in the current row
for element in row:

if element % 2:
odd_numbers.append(element)

print(odd_numbers)
Output:
[1, 3, 5, 7, 9]

E
X
A
M
P
L
E
S

Filtering Matrices Using List Comprehension

• Write a block of code that traverses an input matrix and generates
a list of odd numbers found in the matrix.

26CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

odd_numbers = [element for row in matrix
for element in row

if element % 2]

print(odd_numbers)

Output:
[1, 3, 5, 7, 9]

27

Next: Midterm Exam
1-Nov-2024, @8:15, 3h

CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

