
Signals & Systems Ecole Polytechnique Fédérale, Lausanne
Shkel Spring 2020

Practice Final Solutions

• Rules: This exam is closed-book and closed-notes; calculators, computing and communication
devices are not permitted. Two handwritten and not photocopied double-sided A4 sheets of notes
are allowed. Moreover, copies of the tables in Sections 4.A, 4.B, 4.C, 4.D, 6.A, 6.B, 7.A, and 7.B
in the lecture notes will be attached to the exam sheet.

• You have 180 minutes to complete this exam.

• Unless explicitly stated otherwise, detailed derivations of the results are required for full credit on
all open problems.

• For the multiple choice with unique answer questions, we give

– +3 points if your answer is correct,

– 0 points if your answer is incorrect.

• For the multiple choice with multiple answers questions, we give

– +4 points for all correct answers,

– +2 points for one incorrect answer and three correct answers,

– 0 points for other possibilities of answers.
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1.(3 Pts) The integral
∫∞
−∞ δ(t− 6)

∫∞
−∞ f(τ)δ(t− τ)dτdt evaluates to (check the unique answer!)

1. f(6t) ,

2. 0 ,

3. f(6) ,

4. f(0) .

Solution: The correct answer is (3).

This question checks your understanding of the basic properties of the Dirac-delta function, as used in
class, namely: ∫ ∞

−∞
f(τ)δ(t− τ)dτ = f(t), (1)

and thus, ∫ ∞
−∞

δ(t− 6)

∫ ∞
−∞

f(τ)δ(t− τ)dτdt =

∫ ∞
−∞

δ(t− 6)f(t)dt = f(6). (2)

2. (4 Pts) Which of the following claims about properties of signals and systems are true? (check all
that apply!)

1. The discrete-time signal x[n] = 1√
n
u[n] is not an energy signal.

2. The discrete-time signal z[n] = cos(2n) has fundamental period π .

3. The continuous-time system H{x(t)} = d
dtx(t) is linear and time-invariant.

4. The continuous-time system H{x(t)} = (x(t)− µ)3 is memoryless but not causal.

Solution:

(1) and (3) are true.

1. This is true. The energy of this signal is infinite, and so it is not an energy signal.

2. This is false. z[n] is not even a periodic signal so it does not have a fundamental period. See
Problem Set 1, Problem 3.

3. This is true. This system was analyzed in Problem Set 2, Problem 4.

4. This is false. A memoryless system is always casual.

3. (4 Pts) Which of the following systems are linear? (check all that apply!)

1. y(t) = x(t) .

2. y(t) = (x(t))
n

for any n ∈ Z+ .

3. y(t) = x(t2).

4. y[n] =
∑n
k=−∞(−1)kx[k] .
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Solution:

Systems (1), (3), and (4) are linear.

1. This system is linear. This is the identity system. It is straightforward to check that it is linear.

2. This system is not linear if n > 1 . Let n = 2 . Then

H{a1x1(t) + a2x2(t)} = a21x
2
1(t)+2a1a2x1(t)x2(t)+a22x

2
2(t) 6= a1x

2
1(t)+a2x

2
2(t) = a1H{x1(t)}+a2H{x2(t)}

3. This system is linear. This is very similar to Problem 4(c) on Problem Set 1.

4. This system is linear:

H{a1x1[n] + a2x2[n]} =

n∑
k=−∞

(−1)k(a1x1[k] + a2x2[k])

= a1

n∑
k=−∞

(−1)kx1[k] + a2

n∑
k=−∞

(−1)kx2[k]

= a1H{x1[n]}+ a2H{x2[n]}

4. (4 Pts) Consider a discrete-time LTI system with frequency response H(ejω) = 1
1− 1

3 e
−jω . Which of

the following claims are true? (check all that apply!)

1. The input x[n] and output y[n] satisfy y[n]− 1
3y[n− 2] = x[n]

2. If the input is x[n] = e−j
π
2 n, then the output is y[n] = e−j

π
2
n

1− j3
.

3. The system is causal and memoryless.

4. The input x[n] and output y[n] satisfy y[n]− 1
3y[n− 1] = x[n] .

Solution: From the given equation we get Y (ejω)(1 − 1
3e
−jω) = X(ejω) , thus y[n] − 1

3y[n − 1] = x[n]
so (1) is wrong and (4) is correct.

You may immediately see that (3) is wrong because the system is not memoryless. Recall that an impulse
response of a memoryless system must be a multiple of δ[n] and from Appendix 4.D. we see that the
impulse response for this system will not be a multiple of δ[n] .

Also for input x[n] = ejω0n, the output is y[n] = ejω0nH(ejω0n) and for ω0 = −π2 we deduce that (2)
is correct.

5. (3 Pts) In the time domain, every LTI system can be characterized by its impulse response, and

the input-output relationship can be written as y(t) = (h ∗ x)(t). Let x(t) = 2
π

(
sinc( 2

π t)
)100

, and
h(t) = 4

π sinc( 4
π (t − 1)) . Find Y (ω = 6) , where Y (ω) is the Fourier Transform of y(t) . (check the

unique answer!)

1. 22.125 ,

2. 0 ,

3. π
6 ,

4. None of the other options
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Solution: Recall that in the frequency-domain convolution becomes multiplication and Y (ω) = X(ω)H(ω) .
From Appendix 4.B. we see that H(ω = 6) = 0 . Therefore, without computing X(ω) , we compute
Y (ω) = 0 .

6. (3 Pts) Let xτ (t) = x(t− τ) and yµ(t) = y(t− µ). Let z(t) = (x ∗ y)(t). Then, we have (check the
unique answer!)

1. (xτ ∗ yµ)(t) = z(t− τ − µ) ,

2. (xτ ∗ yµ)(t) = z(t− τ + µ) ,

3. (xτ ∗ yµ)(t) = z(t+ τ − µ)

4. (xτ ∗ yµ)(t) = z(t+ τ + µ)

Solution: This is perhaps most elegantly tackled using the Fourier transform. Namely, Xτ (ω) =
e−jτωX(ω) and Yµ(ω) = e−jµωY (ω). Now, letting v(t) = (xτ∗yµ)(t), we find V (ω) = e−j(τ+µ)ωX(ω)Y (ω) =
e−j(τ+µ)ωZ(ω). Using the time-shift property (in reverse), this implies that v(t) = y(t − τ − µ). The
same can be obtained by changing integration variables, but the risk of small (sign) errors is significantly
higher (in my opinion).

7. (4 Pts) A sampling system that samples continuous-time signals with a sampling frequency ωs = 1000π
is applied to the signal

x(t) = sin(200πt).

The result is the following discrete time signal: (check all that apply!)

1. x[n] = sin(200πn)

2. x[n] = sin( 2
5πn)

3. x[n] = sin(5πn)

4. x[n] = sin(5n)

Solution: The correct answer is (2).

The sampled signal will have the form x[n] = sin(200πTn) where T is the sampling interval. The answer
follows by recalling that T = 2π

ωs
.

You need to be careful here to also rule out (1), (3), and (4) since sometimes two periodic discrete time
signals may appear to be different but are actually the same signal. For example x[n] = sin( 12

5 πn) would
have also been correct.

8. (4 Pts) A signal x(t) is sampled with frequency ωs = 1000π using the impulse-train sampling
procedure covered in lecture, and then reconstructed with a low-pass filter with cut-off frequency ωc =
500π . The reconstructed signal is

xr(t) = cos(300πt).

We do not know anything else about x(t) . Which of the following signals could be x(t) ? (check all
that apply!)

1. x(t) = cos(200πt)
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2. x(t) = cos(300πt)

3. x(t) = cos(1300πt)

4. x(t) = cos(700πt)

Solution:

(2), (3), and (4) are all correct.

A similar question is covered on Problem Set 8. From the lecture notes we have

Xp(ω) =
ωs
2π

∞∑
k=−∞

X(ω − kωs) (3)

and

Xr(ω) = Xp(ω)H(ω). (4)

• If x(t) = cos(200πt) , then ωs > 2ωM (ωM is the largest frequency where frequency response is non-
zero ), then there is no aliasing and after the low pass filter we get xr(t) = cos(200πt) 6= cos(300πt)
so (1) is wrong.

• If x(t) = cos(300πt) , then ωs > 2ωM , then there is no aliasing and after the low pass filter we get
xr(t) = cos(300πt) so (2) is correct.

• If x(t) = cos(1300πt) , then ωs < 2ωM . In this case there is aliasing and the sampling theorem
does not guarantee exact reconstruction of the sampled signal. After we apply (3) and (4) we get
xr(t) = cos(300πt) . Because the Dirac delta at ω = 1300π is shifted by ωs = 1000π and is now at
ω = 300π and after the low pass filer we get xr(t) = cos(300πt) so (3) is correct.

• If x(t) = cos(700πt) , then ωs < 2ωM . tIn this case there is aliasing and the sampling theorem
does not guarantee exact reconstruction of the sampled signal. After we apply (3) and (4) we get
xr(t) = cos(300πt) . Because the Dirac delta at ω = 700π is shifted by ωs = 1000π and is now at
ω = −300π and after the low pass filer we get xr(t) = cos(300πt) so (4) is correct.

9.(3 Pts) The autocorrelation sequence of a sequence x[n] is defined as

r[n] =

∞∑
k=−∞

x[k]x[n+ k]

Let X(z) denote the Z -transform of x[n] . Which one of the following expressions is the Z -transform
of r[n] ? (check the unique answer!)

1. R(z) = X(z)X(−z) .

2. R(z) = X(z)X(z−1) .

3. R(z) = X(−z)X(z−1) .

4. R(z) = X(z−1)X(−z−1) .

Solution: We have the autocorrelation

r[n] =

∞∑
k=−∞

x[k]x[n+ k] =

∞∑
k=−∞

x[−k]x[n− k] = (x1 ∗ x)[n]
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where x1[n] = x[−n] . According to the properties of Z -Transform (Appendix 7.A), we have

X1(z) = X(z−1)

and the Z -transform of autocorrelation should be

R(z) = X1(z)X(z) = X(z−1)X(z)

10. (3 Pts) If two unstable causal LTI systems are placed in a parallel connection, then the overall
(end-to-end) system must be (check the unique answer!)

1. LTI, causal, and unstable

2. LTI, causal, but may be stable

3. LTI, but may be anti-causal,

4. Causal, but may not be LTI.

Solution: The correct answer is (2). A parallel connection of LTI systems will give an LTI system. A
parallel connection of causal LTI systems will give a causal LTI system.

Stability may changes if the poles of the transfer functions for the two systems cancel. Alternatively, the
system impulse responses may not be absolutely summable/integrable individually, but their sum could
still be absolutely summable/integrable.

11. (3 Pts) Which of the following is the impulse response of the causal LTI system described by the
differential equation,

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) = 2

d

dt
x(t) + 3x(t).

(check the unique answer!)

1. h(t) = e−4tu(t) + 2e−2tu(t) .

2. h(t) = e−tu(t) + e−4tu(t) .

3. h(t) = 2etu(t) + e2tu(t) .

4. h(t) = e−tu(t) + e−2tu(t) .

Solution: By using Laplace transform we get

Y (s)(s2 + 3s+ 2) = X(s)(2s+ 3),

thus

H(s) =
2s+ 3

(s+ 2)(s+ 1))
(5)

=
A

s+ 2
+

B

s+ 1
(6)

and even without solving for A and B we get h(t) = Ae−tu(t) + Be−2tu(t) , and the only equation of
this form the the correct exponential power is (4) .

12. (3 Pts) Consider a discrete-time LTI system such that if we feed it with an input x[n] =
(
− 1

3

)n
u[n] ,

the corresponding output would be y[n] = δ[n]+
(
− 1

3

)n
u[n] . Suppose now we feed the same system with

an input signal x[n] =
(
1
9

)n
, ∀n, that is, for −∞ < n <∞ . Then, the corresponding output signal y[n]

would be, (check the unique answer!)
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1. y[n] = 4
(
1
9

)n
, ∀n .

2. y[n] =
(
1
3

)2n
, ∀n .

3. y[n] = 5
(
1
9

)n
, ∀n .

4. y[n] =
(
1
9

)n−1
, ∀n .

Solution: By using Z transform

H(z) =
Y (z)

X(z)
(7)

=
1 + 1

1+ 1
3 z

−1

1
1+ 1

3 z
−1

(8)

= 2 +
1

3
z−1 (9)

so H( 1
9 ) = 5 , thus y[n] = 5

(
1
9

)n
, ∀n . (3) is correct.
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Problem 1 (LTI System) 12 points

Consider an LTI system with an input and output related through the equation

y[n] =

n∑
k=−∞

(
1

2

)−k−n
x[k − 1]

(a) (4 Pts) What is the impulse response h[n] of the system?

Solution: The impulse response of the system is given by

h[n] =

n∑
k=−∞

(
1

2

)−k−n
δ[k − 1] =

{(
1
2

)−1−n
if n ≥ 1

0 if n < 1

= 2n+1u[n− 1]

(b) (4 Pts) Is the system stable? Briefly justify your answer.

Solution: The system is not stable since
∑∞
n=−∞ |h[n]| =∞ both parts (a) and (c) give an example

of a signal with bounded input leading to unbounded output.

Edit: Note that if the system is LTI, then using the condition
∑∞
n=−∞ |h[n]| = ∞ is also correct to

determine that it is not stable.

(c) (4 Pts)

What is the output y1[n] of the system when the input

x1[n] =

(
1

2

)n+1

u[n]

is applied?

Solution:

y1[n] =

n∑
k=−∞

(
1

2

)−k−n(
1

2

)k
u[k − 1] =

n∑
k=1

(
1

2

)−n
= n2nu[n− 1]
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Problem 2 (System Properties) 12 points

Determine if each system being described is causal or not. Briefly justify your answer.

(a) (4 Pts) An LTI system with impulse response h(t) = (1 + e−t+1)u(t− 1)

Solution: This system is causal since the impulse response is zero for t < 0 .

(b) (4 Pts) A continuous-time LTI system with system function H(s) that has the following pole-zero
plot and ROC

Solution: The system is not causal. Since the system function has ROC in the left-hand plane, the
impulse response is left sided and non-zero for t < 0 .

(c) (4 Pts) A discrete-time LTI system with system function H(z) = 1 for all z

Solution: The system is causal. This is just the identity system that outputs the input without doing
anything to it.
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Problem 3 (Communication System) 10 points

In this problem we will perform a simple analysis of an LTI communication system depicted in the figure
below.

(a) (5 Pts) What are the Fourier transforms W1(ω) and W2(ω) of the signals

w1(t) = x1(t) cosωct and w2(t) = x2(t) sinωct ?

You answers should be in terms of X1(ω) and X2(ω) .

Solution: Using multiplication property we obtain

W1(ω) =
1

2π
X1(ω) ∗ π [δ(ω − ωc) + δ(ω + ωc)] =

1

2
[X1(ω − ωc) +X1(ω + ωc)]

and

W2(ω) =
1

2π
X2(ω) ∗ π

j
[δ(ω − ωc)− δ(ω + ωc)] =

1

2j
[X2(ω − ωc)−X2(ω + ωc)]

(b) (5 Pts) Suppose x1(t) and x2(t) are both assumed to be band limited continuous-time signals with
Fourier transforms that satisfy

X1(ω) = 0, |ω| ≥ ωM
and

X2(ω) = 0, |ω| ≥ ωM .

Moreover, ωM < ωc . Let r(t) = w1(t) + w2(t) . The same low-pass filter H(ω) is applied to the signals

r(t) cosωct and r(t) sinωct

in order to obtain y1 and y2 (see figure above). Is it possible to design H(ω) so that y1(t) = x1(t) and
y2(t) = x2(t) ? If yes, determine the gain and the cut-off frequency of the desired low-pass filter. If no,
briefly explain why.

Solution:

From part (a) we obtain

R(ω) =
1

2

[
X1(ω − ωc) +

1

j
X2(ω − ωc)

]
+

1

2

[
X1(ω + ωc)−

1

j
X2(ω + ωc)

]
.

To obtain the Fourier transform of r(t) cosωct we applying the multiplication property again

1

2π
R(ω) ∗ π [δ(ω − ωc) + δ(ω + ωc)] =

1

4

[
X1(ω − ωc) +

1

j
X2(ω − ωc)

]
∗ [δ(ω − ωc) + δ(ω + ωc)]

+
1

4

[
X1(ω + ωc)−

1

j
X2(ω + ωc)

]
∗ [δ(ω − ωc) + δ(ω + ωc)] .
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Distributing the convolution by the frequency-shifted impulses we obtain

1

4

[
X1(ω − 2ωc) +

1

j
X2(ω − 2ωc)

]
+

1

2
X1(ω) +

1

4

[
X1(ω + 2ωc)−

1

j
X2(ω + 2ωc)

]
.

And so we see that it is possible to reconstruct x1(t) by applying a low-pass filter with gain 2 and any
cut-off frequency between ωM and 2ωc − ωM .

We can check that the same low-pass filter would work for x2(t) . We again find the Fourier transform
of r(t) sinωct by applying the multiplication property to obtain

1

4

[
1

j
X1(ω − 2ωc)−X2(ω − 2ωc)

]
+

1

2
X2(ω)− 1

4

[
1

j
X1(ω + 2ωc) +X2(ω + 2ωc)

]
.

It is also possible to trace out the behavior of the system in the time domain by applying Euler’s Formula
twice to r(t) cosωct and r(t) sinωct .
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Problem 4 (System Composition) 10 points

This is a design problem where subparts do not have a unique answer.

(a) (5 Pts) Assume that the overall system has the following frequency response

8 + 3jω

(2 + jω)(3 + jω)
. (10)

With respect to the figure below, find stable LTI systems G and H such that the overall system in the
figure has exactly the frequency response given above.

• Provide the impulse response g(t) and h(t) of the systems G and H, respectively.

• For full credit, the impulse responses g(t) and h(t) cannot be scaled and/or shifted Dirac delta
functions (i.e. g(t), h(t) 6= αδ(t− β) for constants α, β ).

x(t) +

G

H

y(t)

Solution: By partial fraction decomposition

8 + 3jω

(2 + jω)(3 + jω)
=

A

2 + jω︸ ︷︷ ︸
G(ω)

+
B

3 + jω︸ ︷︷ ︸
H(ω)

. (11)

Thus, in order for the equality to hold we must satisfy

A(3 + jω) +B(2 + jω) = 8 + 3jω. (12)

For the equality above we obtain the system of linear equations

3A+ 2B = 8 (13)

A+B = 3, (14)

and it is easy to see that the solution is A = 2, B = 1 . Therefore, one possible solution is g(t) = 2e−2tu(t)
and h(t) = e−3tu(t) .

(b) (5 Pts) Assume that the overall system has the following frequency response same as in part (a)

8 + 3jω

(2 + jω)(3 + jω)
. (15)

With respect to the figure below, find stable LTI systems K , L and M such that the overall system in
the figure has exactly the frequency response given above.

• Provide the impulse response k(t) , `(t) and m(t) of the systems K , L and M, respectively.

• For full credit, the impulse responses k(t) and m(t) cannot be scaled and/or shifted Dirac delta
functions (i.e. k(t),m(t) 6= αδ(t− β) for constants α, β ).

The same expression can be rewritten as

8 + 3jω

(2 + jω)(3 + jω)
=

(
3 +

2

2 + jω

)
︸ ︷︷ ︸
L(ω)+K(ω)

· 1

3 + jω︸ ︷︷ ︸
M(ω)

. (16)

Thus, one possible solution is `(t) = 3δ(t) , k(t) = 2e−2tu(t) and m(t) = e−3tu(t) .
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x(t) +

K

L

M y(t)

Problem 5 (Sampling) 15 points

The signal

x(t) =
15

2π
sinc

(
15

2π
t

)
− 5

π
sinc

(
5

π
t

)
+

5

2π
sinc

(
5

2π
t

)
is sampled with a sampling frequency ωs = 10 .

(a) (5 Pts) Find the Fourier Transform X(ω) . Find ωM such that X(ω) = 0 whenever |ω| > ωM .

Solution:

In the frequency domain

X(ω) =

{
1 , |ω| ≤ 7.5
0 , else

−
{

1 , |ω| ≤ 5
0 , else

+

{
1 , |ω| ≤ 2.5
0 , else

(17)

so ωM , which is the largest frequency where frequency response is non-zero is ωM = 7.5 .

(b) (5 Pts) In lecture, we modeled the sampling operation with multiplication by a periodic impulse train.
Mathematically this could be written as

xp(t) = x(t)p(t) where p(t) =

∞∑
n=−∞

δ(t− nT ).

The reconstruction xr(t) was obtained from xp(t) by applying a low-pass filter h(t) with gain T and
cutoff frequency ωc = ωs

2 , where ωs = 2π
T .

In this case, does xr(t) = x(t) hold? If yes, explain why. If not, find xr(t) .

Solution: The sampling theorem condition is violated as ωs < 2ωM , so sampling theorem cannot be
applied here. However, we could still trace out what happens to this signal in the frequency domain.

From the lecture notes we have

Xp(ω) =
1

T

∞∑
k=−∞

X(ω − kωs). (18)

and also we have

Xr(ω) = Xp(ω)H(ω). (19)

With the low-pass filter described in the question, the reconstructed signal in frequency domain is

X(ω) =

{
1 , |ω| ≤ 5
0 , else

(20)

and in time domain xr(t) = 5
π sinc

(
5
π t
)

.
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(c) (5 Pts) Let x(t) be as given above and y(t) be some arbitrary signal. The signal

z(t) = y(t) ∗ x(t)

is sampled with a sampling frequency ωs = 10 .

We again model the sampling operation with multiplication by a periodic impulse train to obtain

zp(t) = z(t)p(t)

and apply some filter g(t) to obtain a reconstructed signal zr(t) .

Design the reconstruction filter g(t) such that zr(t) = z(t) regardless of the value of y(t) .

Hint: g(t) will no longer be a simple low-pass filter.

Solution:

(c) In order for the reconstructed signal to be the same as the original signal zr(t) = z(t) , the recon-
struction filter must be

G(ω) =
π

5

{
1 , |ω| ≤ 7.5
0 , else

− π

5

{
1 , |ω| ≤ 5
0 , else

+
π

5

{
1 , |ω| ≤ 2.5
0 , else

(21)

and in time domain

g(t) =
3

2
sinc

(
15

2π
t

)
− sinc

(
5

π
t

)
+

1

2
sinc

(
5

2π
t

)
.
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ω

X(ω)

−6 · 5 −4 · 5 −2 · 5 2 · 5 4 · 5 6 · 5

1

ω

Xp(ω)

−6 · 5 −4 · 5 −2 · 5 2 · 5 4 · 5 6 · 5

5
π

ω

H(ω)

−6 · 5 −4 · 5 −2 · 5 2 · 5 4 · 5 6 · 5

π
5

ω

Xr(ω)

−6 · 5 −4 · 5 −2 · 5 2 · 5 4 · 5 6 · 5

1

Figure 1: Frequency response.
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