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Problem 1: Lipschitz Bandits

Assume for the following that you have a bandit algorithm at your disposal that has an expected re-
gret, call it Rn , bounded by c

√
Kn log(n) , where K is the number of arms and n is the time horizon.

You have to design an algorithm for the following scenario. There are infinitely many bandits. More
precisely the bandits are indexed by x , x ∈ [0, 1] . Bandit x has mean µ(x) (which is unknown). But
you do know that the various bandits are related in the sense that

|µ(x)− µ(y)| ≤ L|x− y|, (1)

where L is a known constant. This is known as the Lipschitz bandit problem due to the Lipschitz
condition (1).

A natural approach to such a bandit problem is to discretize the space of bandits. I.e., assume that you
pick K positions 0 ≤ x1 < x2 < · · · < xK ≤ 1 and run your given bandit problem on these K bandits.

a) Bound the expected regret as a function of K , n , L and the placement of points.

b) For n and L fixed, minimize your expression with respect to K and the placement of points.

Hint: In order to simplify your computation, you might want to slightly loosen your bound.

Problem 2: MMSE Estimation

Consider the scenario where p(x|d) = de−dx, for x ≥ 0 (and zero otherwise), that is, the observed
data x is distributed according to an exponential with mean 1/d. Moreover, the desired variable d itself
is also exponentially distributed, with parameter λ, that is, p(d) = λe−λd.

(a) Find the MMSE estimator of d given x, and calculate the corresponding mean-squared error incurred
by this estimator.

(b) Find the MAP estimator of d given x.

Problem 3: Conditional Independence and MMSE

For simplicity, throughout this problem, all random variables are assumed to be zero-mean.

(a) Show that if X and Y are conditionally independent given Z, then

E[(X − E[X|Z])(Y − E[Y |Z])] = 0. (2)
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(b) Now let X and Y be jointly Gaussian (zero-mean). It is well known that if E[XY ] = 0, then X
and Y are independent. Establish this fact starting from the observation that for (zero-mean) Gaussian
random variables X and Y, we may always write Y = αX + W, for some constant α, where W is
zero-mean Gaussian independent of X. Note: This prepares you for Part (c).

(c) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that if

E[(X − E[X|Z])(Y − E[Y |Z])] = 0, (3)

then X and Y are conditionally independent given Z. Hint: Make sure to solve Part (b) first. Recall
that for three jointly Gaussians X,Y, Z, we can always write Y = γX + δZ + V, for some constants γ
and δ, where V is Gaussian and independent of X and Z.

(d) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that X and Y
are conditionally independent given Z if and only if

E[XY ]E[Z2] = E[XZ]E[Y Z]. (4)

(e) Continuing from Part (d), let us simplify: E[X2] = E[Y 2] = E[Z2] = 1, and use the notation
ρ = E[XY ]. Define a = E[XZ] and b = E[Y Z]. Find

argmax
a,b

min
f

E[(Z − f(X,Y ))2], (5)

where the inner minimum is over all measurable functions f(x, y).

Problem 4: Fisher Information and Divergence

Suppose we are given a family of probability distributions {p( · ; θ) : θ ∈ R} on a set X , parametrized
by a real valued parameter θ . (Equivalently, a random variable X whose distribution depends on θ .)
Assume that the parametrization is smooth, in the sense that

p′(x; θ) :=
∂

∂θ
p(x; θ) and p′′(x; θ) :=

∂2

∂θ2
p(x; θ)

exist. (Note that the derivaties are with respect to the parameter θ , not with respect to x .) We will
use the notation Eθ0 [·] to denote expectations when the parameter is equal to a particular value θ0 , i.e.,
Eθ[g(X)] =

∑
x p(x; θ)g(x) .

Define the function K(θ, θ′) := D
(
p( · ; θ)∥p( · ; θ′)

)
.

(a) Show that for any θ0 ,
∂

∂θ
K(θ, θ0) =

∑
x

p′(x; θ) log
p(x; θ)

p(x; θ0)
.

(b) Show that
∂2

∂θ2
K(θ, θ0) =

∑
x

p′′(x; θ) log
p(x; θ)

p(x; θ0)
+ J(X; θ) with

J(X; θ) := Eθ

[(
p′(X; θ)/p(X; θ)

)2]
.

(c) Show that when θ is close to θ0

K(θ, θ0) =
1
2J(X; θ0)(θ − θ0)

2 + o((θ − θ0)
2)

(d) Show that J(X; θ) = −Eθ

[
∂2

∂θ2 log p(X; θ)
]
.
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