Problem Set 4 (Graded) — Due Tuesday, November 5, before class starts For the Exercise Sessions on Oct 15 and Oct 29

Problem 1: Lipschitz Bandits

Assume for the following that you have a bandit algorithm at your disposal that has an expected regret, call it R_n , bounded by $c\sqrt{Kn \log(n)}$, where K is the number of arms and n is the time horizon.

You have to design an algorithm for the following scenario. There are infinitely many bandits. More precisely the bandits are indexed by $x, x \in [0, 1]$. Bandit x has mean $\mu(x)$ (which is unknown). But you do know that the various bandits are related in the sense that

$$
|\mu(x) - \mu(y)| \le L|x - y|,\tag{1}
$$

where L is a known constant. This is known as the Lipschitz bandit problem due to the Lipschitz condition (1).

A natural approach to such a bandit problem is to discretize the space of bandits. I.e., assume that you pick K positions $0 \le x_1 < x_2 < \cdots < x_K \le 1$ and run your given bandit problem on these K bandits.

- a) Bound the expected regret as a function of K, n, L and the placement of points.
- b) For n and L fixed, minimize your expression with respect to K and the placement of points.

Hint: In order to simplify your computation, you might want to slightly loosen your bound.

Problem 2: MMSE Estimation

Consider the scenario where $p(x|d) = de^{-dx}$, for $x \ge 0$ (and zero otherwise), that is, the observed data x is distributed according to an exponential with mean $1/d$. Moreover, the desired variable d itself is also exponentially distributed, with parameter λ , that is, $p(d) = \lambda e^{-\lambda d}$.

(a) Find the MMSE estimator of d given x, and calculate the corresponding mean-squared error incurred by this estimator.

(b) Find the MAP estimator of d given x.

Problem 3: Conditional Independence and MMSE

For simplicity, throughout this problem, all random variables are assumed to be zero-mean.

 (a) Show that if X and Y are conditionally independent given Z, then

$$
\mathbb{E}[(X - \mathbb{E}[X|Z])(Y - \mathbb{E}[Y|Z])] = 0.
$$
\n(2)

(b) Now let X and Y be jointly Gaussian (zero-mean). It is well known that if $\mathbb{E}[XY] = 0$, then X and Y are independent. Establish this fact starting from the observation that for (zero-mean) Gaussian random variables X and Y, we may always write $Y = \alpha X + W$, for some constant α , where W is zero-mean Gaussian independent of X. Note: This prepares you for Part (c) .

 (c) Let X, Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that if

$$
\mathbb{E}[(X - \mathbb{E}[X|Z])(Y - \mathbb{E}[Y|Z])] = 0,\t\t(3)
$$

then X and Y are conditionally independent given Z. Hint: Make sure to solve Part (b) first. Recall that for three jointly Gaussians X, Y, Z, we can always write $Y = \gamma X + \delta Z + V$, for some constants γ and δ , where V is Gaussian and independent of X and Z.

(d) Let X, Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that X and Y are conditionally independent given Z if and only if

$$
\mathbb{E}[XY]\mathbb{E}[Z^2] = \mathbb{E}[XZ]\mathbb{E}[YZ].\tag{4}
$$

(e) Continuing from Part (d), let us simplify: $\mathbb{E}[X^2] = \mathbb{E}[Y^2] = \mathbb{E}[Z^2] = 1$, and use the notation $\rho = \mathbb{E}[XY]$. Define $a = \mathbb{E}[XZ]$ and $b = \mathbb{E}[YZ]$. Find

$$
\arg\max_{a,b} \min_{f} \mathbb{E}[(Z - f(X, Y))^2],\tag{5}
$$

where the inner minimum is over all measurable functions $f(x, y)$.

Problem 4: Fisher Information and Divergence

Suppose we are given a family of probability distributions $\{p(\cdot;\theta): \theta \in \mathbb{R}\}\)$ on a set X, parametrized by a real valued parameter θ . (Equivalently, a random variable X whose distribution depends on θ .) Assume that the parametrization is smooth, in the sense that

$$
p'(x; \theta) := \frac{\partial}{\partial \theta} p(x; \theta)
$$
 and $p''(x; \theta) := \frac{\partial^2}{\partial \theta^2} p(x; \theta)$

exist. (Note that the derivaties are with respect to the parameter θ , not with respect to x.) We will use the notation $\mathbb{E}_{\theta_0}[\cdot]$ to denote expectations when the parameter is equal to a particular value θ_0 , i.e., $\mathbb{E}_{\theta}[g(X)] = \sum_{x} p(x; \theta)g(x)$.

Define the function $K(\theta, \theta') := D(p(\cdot; \theta) || p(\cdot; \theta'))$.

- (a) Show that for any θ_0 , $\frac{\partial}{\partial \theta} K(\theta, \theta_0) = \sum_x$ $p'(x; \theta) \log \frac{p(x; \theta)}{p(x; \theta_0)}$.
- (b) Show that $\frac{\partial^2}{\partial \theta^2} K(\theta, \theta_0) = \sum_x$ $p''(x; \theta) \log \frac{p(x; \theta)}{p(x; \theta_0)} + J(X; \theta)$ with

$$
J(X; \theta) := \mathbb{E}_{\theta} \big[\big(p'(X; \theta) / p(X; \theta) \big)^2 \big].
$$

(c) Show that when θ is close to θ_0

$$
K(\theta, \theta_0) = \frac{1}{2}J(X; \theta_0)(\theta - \theta_0)^2 + o((\theta - \theta_0)^2)
$$

(d) Show that $J(X; \theta) = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log p(X; \theta) \right]$.