Corrigé série 6

Exercice 1 (5 points)

Soit $a \in \mathbb{R}$ et montrons que la fonction f est continue en ce point. Soit $\varepsilon > 0$, alors si $|x-a| < \delta = \varepsilon$, on a $|f(x) - f(a)| = |x - a| < \varepsilon$, ce qui signifie que la fonction f est continue en a. Comme a est arbitraire, la fonction f est continue en tout point $a \in \mathbb{R}$, elle est donc continue.

Exercice 2 (5 points)

- a) Pour montrer l'identité $-2\sin\left(\frac{x-y}{2}\right)\sin\left(\frac{x+y}{2}\right) = \cos(x) \cos(y)$,
 - calculer $\cos(u+v) \cos(u-v)$ à l'aide des formules de la somme et différence des angles,
 - poser ensuite $u = \frac{x+y}{2}$ et $v = \frac{x-y}{2}$.
- b) Montrons que la fonction f est continue en tout point d'abscisse $a \in \mathbb{R}$. Soit $\varepsilon > 0$. Posons $\delta = \varepsilon$. Alors si $|x - a| < \delta$, on a

$$|f(x) - f(a)| = |\cos(x) - \cos(a)| \stackrel{\text{(a)}}{=} |-2\sin\left(\frac{x-a}{2}\right)\sin\left(\frac{x+a}{2}\right)|$$

$$|\sin\left(\frac{x+a}{2}\right)| \le |2\sin\left(\frac{x-a}{2}\right)| \stackrel{|\sin\left(\frac{x+a}{2}\right)| \le \frac{x+a}{2}}{\le |2\frac{x-a}{2}|} = |x-a| < \varepsilon,$$

Ainsi, la fonction cos est continue en toute abscisse $a \in \mathbb{R}$.

Exercice 3 (5 points)

- a) Faux, cette fonction n'est pas continue en a=0 car $\lim_{x\to 0^+} 1/x = +\infty$. La fonction f n'étant pas définie en a=0, elle ne peut pas être continue en ce point.
- b) Vrai, pour qu'une fonction soit continue, il faut qu'elle le soit en tout point de son domaine de définition et ici $0 \notin D(f)$.
- c) Faux, car la fonction $f(x) = \frac{1}{x}$ est une fonction rationnelle.
- d) Vrai pour la même raison qu'au point (b) : les points auquels le dénomninateur s'annule ne font pas partie du domaine de définition.
- e) Vrai, car nous avons vu dans une série précédente que $\lim_{x\to a}|x|=|a|$ pour tout $a\in\mathbb{R}.$

Exercice 4 (5 points)

a) On a
$$f(x) = \frac{x^2 - 2x + 1}{x^2 - 1} = \frac{(x - 1)^2}{(x - 1)(x + 1)} = \frac{x - 1}{x + 1}$$
, ainsi $D(f) = \mathbb{R} \setminus \{\pm 1\}$.

Cette fonction peut être prolongée par continuité en x = 1 car $\lim_{x \to 1} f(x) = 0$.

Son prolongement par continuité en x = 1 est :

$$g: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$$
$$x \mapsto \begin{cases} f(x) & \text{si } x \neq 1\\ 0 & \text{si } x = 1. \end{cases}$$

- b) La fonction f n'est pas prolongeable par continuité en x=-1 car $\lim_{x\to -1}f(x)$ n'existe pas.
- c) Comme 0 appartient au domaine de définition de la fonction f, il n'est pas nécessaire de la prolonger par continuité en 0.

En fait, si on se réfère strictement à la définition du prolongement par continuité, la question de prolonger en x = a une fonction déjà définie en x = a n'a simplement pas de sens.

Exercice 5 (5 points)

a) $D(f) = \mathbb{R}^*$. Comme $\lim_{x \to 0^+} \cos(x) = 1$, la fonction f peut être prolongée par continuité. Sa prolongée par continuité est :

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} f(x) & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

f admet une asymptote horizontale à gauche d'équation y=1.

- b) $D(f) = \mathbb{R}^*$. Comme $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \sin(x) = 0$ mais que $\lim_{x \to 0^-} f(x) = 1$, la fonction f ne peut pas être prolongée par continuité en x = 0. f admet une asymptote horizontale à gauche d'équation y = 1.
- c) On a $D(f) = \mathbb{R} \setminus \{2, 6\}$. On a $\lim_{x \to 2^-} f(x) = -1$ et $\lim_{x \to 2^+} f(x) = \exp_{10}(2) = 100$, f ne peut donc pas être prolongée par continuité en x = 2.

Par ailleurs, f(3)=1000 et $\lim_{x\to 3^-}f(x)=\exp_{10}(3)=1000$ et donc f est continue en x=3.

f admet une asymptote oblique à gauche d'équation y=-x+1, une asymptote verticale d'équation x=6 et une asymptote horizontale à droite d'équation y=3000.

d) On a $D(f) = \mathbb{R} \setminus \{0\}$. Comme nous l'avons vu au cours, $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$, donc f peut être prolongée par continuité en x = 0:

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} f(x) & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$$

f admet une asymptote horizontale à gauche et à droite d'équation y = 0.

En effet, pour
$$x > 0$$
, on a $\frac{-1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$. Comme $\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{-1}{x} = 0$,

par le théorème des deux gendarmes, on conclut que $\lim_{x\to\infty} \frac{\sin(x)}{x} = 0$

De même, pour
$$x < 0$$
, on a $\frac{1}{x} \le \frac{\sin(x)}{x} \le \frac{-1}{x}$, et $\lim_{x \to -\infty} \frac{\sin(x)}{x} = 0$.

Exercice 6 (5 points)

Montrons que f et continue en 0. Soit $\varepsilon > 0$, alors si $|x - 0| < \delta = \varepsilon$, on a

$$|f(x) - f(0)| = \begin{cases} |x - 0| < \varepsilon & \text{si } x \in \mathbb{Q} \\ |0 - 0| = 0 < \varepsilon & \text{si } x \notin \mathbb{Q} \end{cases}$$

et donc f est continue en 0.

Soit $a \in \mathbb{Q}$; montrons que la fonction f est discontinue en ce point. Considérons la suite de terme général $a + \sqrt{2}/n$. Alors $f(a + \sqrt{2}/n) = 0$ car $a + \sqrt{2}/n \notin \mathbb{Q}$ (la somme d'un rationnel et d'un irrationnel est irrationnelle, voir ci dessous). Cependant, comme la suite $(a + \sqrt{2}/n)_{n \in \mathbb{N}}$ tend vers a et que f(a) = a, on en conclut que la fonction n'est pas continue en $a \notin \mathbb{Q}$.

Soit $a \notin \mathbb{Q}$; montrons que la fonction f est discontinue en ce point. Comme \mathbb{Q} est dense dans \mathbb{R} , pour tout $n \in \mathbb{N}$, il existe $x_n \in \mathbb{Q}$ avec $a < x_n < a + \frac{1}{n+1}$. On obtient ainsi une suite de rationnels $(x_n)_{n \in \mathbb{N}}$ qui converge vers a. Donc $(f(x_n))_{n \in \mathbb{N}} = (x_n)_{n \in \mathbb{N}}$ converge vers $a \neq 0$, mais f(a) = 0. La fonction f ne peut donc pas être continue en a (car si f était continue en a, alors pour toute suite $(x_n)_{n \in \mathbb{N}}$ avec $\lim_{n \to \infty} x_n = a$, on aurait $\lim_{n \to \infty} f(x_n) = f(a)$).

Montrons que la somme d'un rationnel et d'un irrationnel est irrationnelle. Soit x = p/q un nombre rationnel et y un nombre irrationnel. La somme x+y ne peut pas être un nombre rationnel x+y=m/n car si c'était le cas on aurait y=m/n-x=m/n-p/q=(pn+mq)/(qn), et y serait donc un nombre rationnel. La somme x+y est donc un nombre irrationnel.

Corrigé série 6

Euler 3ème année

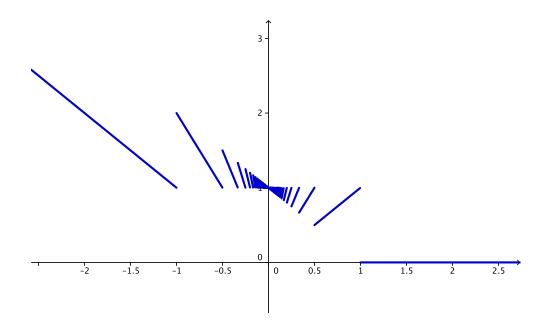
Exercice 7 (5 points)

Pour que cette limite soit égale à 1, les coefficients des termes de degré 0 et 1 doivent être égaux, c'est-à-dire $(a^2 - 1)(b - 2) = 0$ et $a^2(b + 2) = 4$. Ces conditions impliquent que $a = \pm 1$ et b = 2.

Ainsi $\lim_{x \to 0} \frac{(a^2 - 1)(b - 2) + 4x + x^3}{a^2(b + 2)x + abx^2} = \lim_{x \to 0} \frac{4x + x^3}{4x + abx^2} = \lim_{x \to 0} \frac{x}{x} \cdot \frac{4 + x^2}{4 + abx} = 1.$

Exercice 8 (5 points)

- a) Soit x < -1, alors |1/x| = -1 et donc x|1/x| = -x.
- b) Soit x > 1, alors |1/x| = 0 et donc x |1/x| = 0.
- c) Soit $\frac{1}{n+1} < x \le \frac{1}{n}$ alors $\lfloor 1/x \rfloor = n$ et donc f(x) = nx.
- d) On a $\lim_{x\to 1/n^-} f(x) = 1$ et $\lim_{x\to 1/n^+} f(x) = \frac{n-1}{n}$, la limite en 1/n n'existe donc pas et la fonction n'est pas continue en ce point. Ci-dessous, le graphe de la fonction :



Exercice 9 (5 points)

- a) Comme $f(a) \in [a, b]$ et $f(b) \in [a, b]$, on a que $a \le f(a) \le b$ et $a \le f(b) \le b$, ainsi $g(a) = a f(a) \le a a = 0$ et $g(b) = b f(b) \ge b b = 0$.
- b) Par le point précédent, on sait que $g(a) \leq 0 \leq g(b)$ et donc par le Théorème de la Valeur Intermédiaire, il existe $c \in [a, b]$ tel que g(c) = 0.
- c) Par le point précédent, il existe $c \in [a, b]$ tel que g(c) = 0, ou de manière équivalente, f(c) = c: c'est la solution cherchée.

Exercice 10 (5 points)

- a) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 \cdot (1 + a/x + b/x^2 + c/x^3) = -\infty$, de même $\lim_{x \to +\infty} f(x) = +\infty$.
- b) Comme $\lim_{x\to +\infty} f(x) = +\infty$, si on prend x_1 suffisament grand on aura $f(x_1) > 0$ et de même comme $\lim_{x\to -\infty} f(x) = -\infty$, si on prend x_2 suffisament petit on aura $f(x_2) < 0$.
- c) Comme $f(x_2) < 0 < f(x_1)$ et que la fonction f est continue, on conclut par le Théorème de la Valeur Intermédiaire qu'il existe $c \in \mathbb{R}$ tel que f(c) = 0. Rappelons que f(c) donne aussi la valeur du reste de la division euclidienne de f(x) par x c. On a donc $f(x) = (x c)(x^2 + a'x + b')$; comme x c a un seul zéro et que $x^2 + a'x + b'$ a aucun, un, ou deux zéros, l'équation f(x) = 0 possède au minimum une solution et au maximum trois solutions.
- d) Puisque f(0) = -1 < 0 et f(1) = 1 > 0 on sait grâce au point précédent que la fonction f s'annule dans l'intervalle [0,1]. De même, du fait que f(1/2) < 0, la fonction f s'annule dans l'intervalle [1/2,1]. Par suite, en constatant que f(3/4) > 0, on peut affirmer que la fonction f s'annule dans l'intervalle [1/2,3/4]. Finalement, en remarquant que f(5/8) < 0, on obtient que dans l'intervalle [5/8,3/4], la fonction f s'annule. On a ainsi trouvé un intervalle de longueur 1/8 dans lequel la fonction f s'annule.

Exercice 11 (5 points)

- a) Vrai, en voici la preuve. Soient $x \leq y$ alors comme f est croissante on a $f(x) \leq f(y)$, comme g est croissante on a $g(f(x)) \leq g(f(y))$ et donc $g \circ f$ est croissante.
- b) Faux. Par exemple, la fonction $x\mapsto\arctan x$ est bornée par $\pi/2$ mais n'atteint jamais cette valeur.
- c) Faux car la fonction

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

est bornée par 1, atteint son maximum, par exemple en 0, mais n'est pas continue.

- d) Faux, en reprenant la fonction f du point précédent et en considérant la fonction g=-f, alors $f+g=f-f\equiv 0$ et la fonction identiquement nulle est continue.
- e) Vrai. En effet, la fonction cosinus est continue (vu précédemment). Par suite, la fonction $\sin(x) = \cos(x \frac{\pi}{2})$ est aussi continue puisqu'elle est la composition des fonctions continues $g(x) = x \frac{\pi}{2}$ et $f(x) = \cos(x)$. Ainsi, la fonction donnée est continue car elle est obtenue par composition, addition et soustraction de fonctions continues.

Exercice 12 (5 points) On a f(0) = 10 et $f(\sqrt{\pi/4}) = 11$ et donc si f était continue, le Théorème de la Valeur Intermédiaire assurerait l'existence de $c \in [0, \sqrt{\pi/4}]$ tel que f(c) = 10.5. Mais ce n'est pas possible car f ne prend que des valeurs entières.

Exercice 13 (5 points)

- a) Cette fonction n'est pas continue en 0. Considérons pour cela la suites de terme général $a_n = \sqrt{2}/n$. On a alors $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} 1 + \sqrt{2}/n = 1$ et pourtant la suite a_n tend vers 0. Ainsi la fonction n'est pas continue en 0, elle n'est donc pas continue.
- b) Montrons que f est injective. Pour ce faire, soient $x,y \in \mathbb{R}$ tels que $x \neq y$. Alors si les deux sont rationnels, $f(x) = x \neq y = f(y)$, si les deux sont irrationnels, $f(x) = 1 + x \neq 1 + y = f(y)$. Finalement si l'un des deux, disons x, est irrationnel et y est rationnel, alors $f(x) = 1 + x \neq y = f(y)$ car la somme d'un rationnel, 1, et d'un irrationel, x, est irrationnelle (car sinon, on a $\frac{p}{q} + x = \frac{p'}{q'}$ avec $p, p' \in \mathbb{N}$ et $q, q' \in \mathbb{N}^*$, et alors $x = \frac{p'}{q'} \frac{p}{q} = \frac{p'q pq'}{qq'} \in \mathbb{Q}$ ne peut pas être irrationnel) et ne peut donc pas être égale à y. Ainsi, quels que soient x et y dans \mathbb{R} avec $x \neq y$, on a $f(x) \neq f(y)$, ce qui prouve que la fonction est injective.

Montrons que la fonction est surjective, soit $y \in \mathbb{R}$, alors si $y \in \mathbb{Q}$ on a y = f(y) et si $y \notin \mathbb{Q}$, on a y = f(y - 1) (car $y - 1 \notin \mathbb{Q}$), ce qui prouve que la fonction est surjective.

La fonction f est injective et surjective, elle est donc bijective.

c) Supposons que f est croissante, ce qui signifie que pour tous $x, y \in \mathbb{R}$ tels que x < y, on a f(x) < f(y). Or on a le contre-exemple suivant : $\sqrt{2} < 2$ et pourtant $f(\sqrt{2}) = 1 + \sqrt{2} > 2 = f(2)$ et donc la fonction n'est pas croissante. Supposons à présent que f est décroissante, ce qui signifie que pour tous $x, y \in \mathbb{R}$ tels que x < y, on a f(x) > f(y), or si x = 1 et $y = \sqrt{2}$, cette relation ne marche pas. Ainsi, f n'est pas non plus décroissante.

Exercice 14 (5 points)

a) Deux petites démonstration par récurrence montrent que $\sqrt{2} \le x_{n-1} < 2$ pour tout $n \in \mathbb{N}^*$. De plus

$$x_n - x_{n-1} = \sqrt{2x_{n-1}} - x_{n-1} = \frac{2x_{n-1} - x_{n-1}^2}{\sqrt{2x_{n-1}} + x_{n-1}} = \frac{x_{n-1}(2 - x_{n-1})}{\sqrt{2x_{n-1}} + x_{n-1}}$$

Comme $\sqrt{2} \le x_{n-1} < 2$, on a $x_n - x_{n-1} > 0$, soit $x_n > x_{n-1}$, c'est-à-dire que la suite (x_n) est strictement croissante. Comme elle est aussi bornée, elle converge.

Les candidats x à sa limite satisfont $x = \sqrt{2x}$, c'est-à-dire x(x-2) = 0.

Comme $x_0 > 0$ est que la suite est croissante, la limite est nécessairement x = 2.

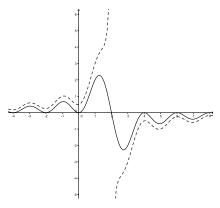
b) On a
$$\frac{\cos(\pi x) - 1}{x - 2} = \frac{\cos^2(\pi x) - 1}{(x - 2)(\cos(\pi x) + 1)} = \frac{\sin^2(\pi x)}{(x - 2)(\cos(\pi x) + 1)}$$
.

Or $\cos(\pi x) + 1$ tend vers 2, $\sin(\pi x)$ tend vers 0.

Pour calculer la limite de $\sin(\pi x)/(x-2)$, on pose x-2=y et on obtient $\sin(\pi y)/(\pi y) \cdot \pi$ qui tend vers $1 \cdot \pi$ lorsque y tend vers 0 et donc le tout tend vers 0.

- c) On trouve $\lim_{x\to 2^-} g(x) = +\infty$ et $\lim_{x\to 2^+} g(x) = -\infty$. Donc $\lim_{x\to 2} g(x)$ n'existe pas.
- d) Par le point (b), on peut prolonger f par continuité en 2; par contre, comme par exemple $\lim_{x\to 2^-}g(x)=+\infty$, la fonction g n'est pas prolongeable par continuité en x=2.

De plus, on a $\lim_{x\to 2} f(x) = 0$, $\lim_{x\to 2^-} g(x) = +\infty$ et $\lim_{x\to 2^+} g(x) = -\infty$ et donc f n'admet pas d'asymptote verticale en x=2 (voir la ligne continue dans le graphe ci-contre) tandis que g admet une asymptote verticale en x=-2.



Bonus.

a) Supposons que $a \ge b \iff a - b \ge 0$ et donc |a - b| = a - b. Ainsi,

$$\frac{1}{2}(a+b+|a-b|) = \frac{1}{2}(a+b+a-b) = a = \max(a,b).$$

On effectue le même raisonnement si $b \geq a$.

- b) On a $\min(a, b) = \frac{1}{2}(a + b |a b|)$, on peut le vérifier de la même façon qu'au point (a).
- c) Soient $a \in \mathbb{R}$, f et g deux fonctions continues en a. Alors par une proposition du cours, les fonctions f+g et f-g sont continues, par suite la fonction |f-g| est continue, de même que la fonction f+g+|f-g|. En appliquant une dernière fois cette proposition, on a que la fonction $\max(f,g)=\frac{1}{2}(f+g+|f-g|)$ est continue.
- d) Même raisonnement qu'au point précédent.