EPFL – Automne 2025	S. Basterrechea
Analyse I – CGC, EL, MX	Exercices
Série 5	13 octobre 2025

Partie I: Racines et polynômes complexes

Exercice 1.

Déterminer toutes les racines complexes suivantes et les représenter graphiquement.

a) Les racines 5-èmes de 1.

c) Les racines 4-èmes de -2i

b) Les racines carrées de -5 + 12i

d) Les racines cubiques de $-\sqrt{3} + i$

Solution.

a) On cherche à résoudre $z^5=1$, avec la méthode des exponentielles. Puisque |1|=1 et $\arg(1)=0$ (on peut le voir à l'aide d'un dessin), nous pouvons écrire sous forme polaire $1=1e^{i(0+2k\pi)}=e^{i2k\pi}$ avec $k\in\mathbb{Z}$. On multiplie ensuite nos exposants par $\frac{1}{5}$:

$$z_k = e^{i\frac{2k\pi}{5}}, \quad avec \ k = 0, 1, 2, 3, 4.$$

On obtient ainsi les 5 racines 5-èmes de 1 :

$$z_0 = e^{i\frac{2\cdot 0\pi}{5}} = e^0 = 1$$
, $z_1 = e^{i\frac{2\pi}{5}}$, $z_2 = e^{i\frac{4\pi}{5}}$, $z_3 = e^{i\frac{6\pi}{5}}$, $z_4 = e^{i\frac{8\pi}{5}}$

(voir Fig. 1 (a)).

b) Nous résolvons l'équation $z^2=-5+12i$ avec la méthode cartésienne : posons z=x+iy, qui donne l'équation

$$x^2 - y^2 + i2xy = -5 + 12i.$$

En identifiant partie réelle et imaginaire, on déduit

$$\begin{cases} x^2 - y^2 = -5 & (1) \\ 2xy = 12 & (2) \end{cases}$$

Pour la simplification des calculs, nous ajoutons l'équation des modules :

$$|z^2| = |-5 + 12i| \implies x^2 + y^2 = \sqrt{5^2 + 12^2} = \sqrt{169} = 13$$
 (3).

En travaillant les équations (1) et (3), nous obtenons

$$\begin{cases} (1) + (3) : 2x^2 = 8 \implies x = \pm 2 \\ (3) - (1) : 2y^2 = 18 \implies y = \pm 3. \end{cases}$$

Enfin, l'équation (2) indique que x et y doivent avoir le même signe, ce qui nous donne les deux solutions

$$z_0 = 2 + 3i$$
 et $z_1 = -2 - 3i$.

(voir Fig. 1 (b)).

c) On cherche à résoudre $z^4=-2i$, avec la méthode des exponentielles. On a |-2i|=2 et $\arg(-2i)=-\frac{\pi}{2}$ (on peut le voir à l'aide d'un dessin). Donc, $-2i=2e^{i\left(-\frac{\pi}{2}+2k\pi\right)}$ avec $k\in\mathbb{Z}$. En amplifiant nos exposants par 1/4, on obtient

$$z_k = 2^{\frac{1}{4}} e^{i\left(-\frac{\pi}{8} + \frac{k\pi}{2}\right)} = \sqrt[4]{2} e^{i\frac{(4k-1)\pi}{8}}, \quad avec \ k = 0, 1, 2, 3.$$

On obtient ainsi les racines 4-èmes de -2i:

$$z_0 = \sqrt[4]{2}e^{-i\frac{\pi}{8}}, \quad z_1 = \sqrt[4]{2}e^{i\frac{3\pi}{8}}, \quad z_2 = \sqrt[4]{2}e^{i\frac{7\pi}{8}}, \quad z_3 = \sqrt[4]{2}e^{i\frac{11\pi}{8}}$$

(voir Fig. 1 (c)).

d) On cherche les racines $3^{\grave{e}mes}$ de $-\sqrt{3}+i$. On a $|-\sqrt{3}+i|=2$ et $\arg(-\sqrt{3}+i)=\frac{5\pi}{6}$. Donc, $-\sqrt{3}+i=2e^{i\left(\frac{5\pi}{6}+2k\pi\right)}$ avec $k\in\mathbb{Z}$. En amplifiant nos exposants par 1/3, on obtient $2^{\frac{1}{3}}e^{i\left(\frac{5\pi}{18}+\frac{2k\pi}{3}\right)}=\sqrt[3]{2}e^{i\frac{(5+12k)\pi}{18}}$. Pour k=0,1,2, on obtient les 3 racines cubiques de $-\sqrt{3}+i$:

$$z_0 = \sqrt[3]{2}e^{i\frac{5\pi}{18}}, \quad z_1 = \sqrt[3]{2}e^{i\frac{17\pi}{18}}, \quad z_2 = \sqrt[3]{2}e^{i\frac{29\pi}{18}}$$

(voir Fig. 1 (d)).

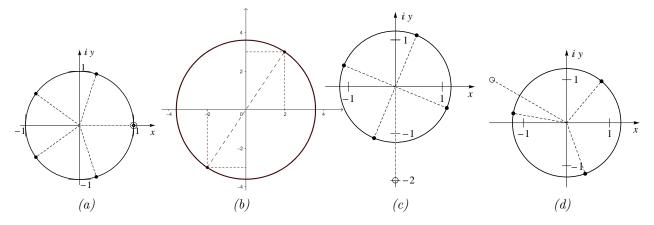


FIGURE 1 – Représentation graphique des solutions dans le plan complexe.

Exercice 2.

Résoudre les équations suivantes dans \mathbb{C} :

a)
$$z^2 + 6z + 12 - 4i = 0$$

b)
$$z^6 - 2z^3 + 2 = 0$$

Solution.

a) Nous utilisons d'abord la complétion du carré pour simplifier l'équation :

$$0 = z^{2} + 6z + 12 - 4i = (z^{2} + 6z + 9) - 9 + 12 - 4i = (z + 3)^{2} + 3 - 4i \implies (z + 3)^{2} = -3 + 4i.$$

Cherchons maintenant les racines carrées de -3+4i avec la méthode cartésienne, c'est à dire les solutions de l'équation

$$(x+iy)^2 = -3+4i$$
 \implies $x^2 - y^2 + i2xy = -3+4i.$

En identifiant partie réelle et imaginaire, on déduit

$$\begin{cases} x^2 - y^2 = -3 & (1) \\ 2xy = 4 & (2) \end{cases}$$

Pour la simplification des calculs, nous ajoutons l'équation des modules :

$$|x+iy|^2 = |-3+4i| \implies x^2 + y^2 = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$
 (3).

En travaillant les équations (1) et (3), nous obtenons

$$\begin{cases} (1) + (3) : 2x^2 = 2 \implies x = \pm 1 \\ (3) - (1) : 2y^2 = 8 \implies y = \pm 2. \end{cases}$$

Enfin, l'équation (2) indique que x et y doivent avoir le même signe, ce qui nous donne les deux racines

$$1 + 2i$$
 et $-1 - 2i$.

En revenant à l'équation originale, nous déduisons de ce qui précède que

$$(z+3)^2 = -3 + 4i$$
 \implies $z+3 = \pm(1+2i)$ \implies $z = -3 \pm (1+2i)$

d'où les deux solutions

$$z_1 = -2 + 2i$$
 et $-4 - 2i$.

b) <u>Méthode 1</u> : L'équation est équivalente à

$$\left(z^3\right)^2 - 2z^3 + 2 = 0.$$

Cette équation étant une équation du $2^{\grave{e}me}$ degré pour z^3 , on peut la résoudre à l'aide de la méthode du discriminant. On a

$$\Delta = (-2)^2 - 4 \cdot 1 \cdot 2 = -4.$$

Les deux racines complexes de -4 sont -2i et 2i, et donc, on déduit que

$$z^3 = \frac{2 \pm 2i}{2} = 1 \pm i.$$

On résout encore $z^3=1+i$ et $z^3=1-i$ pour trouver toutes les solutions de $z^6-2z^3+2=0$ Commençons par $z^3=1+i$. Cette équation consiste à trouver les racines $3^{\text{èmes}}$ de 1+i. On a $|1+i|=\sqrt{2}$ et $\arg(1+i)=\frac{\pi}{4}$ (on peut le voir à l'aide d'un dessin). Donc, $1+i=\sqrt{2}e^{i\left(\frac{\pi}{4}+2k\pi\right)}$, avec $k\in\mathbb{Z}$. Amplifiant nos exposants par 1/3, on obtient $\sqrt{2}^{\frac{1}{3}}e^{i\left(\frac{\pi}{12}+\frac{2k\pi}{3}\right)}=\sqrt[6]{2}e^{i\frac{\pi+8k\pi}{12}}$. En prenant k=0,1,2, on trouve les solutions de $z^3=1+i$:

$$z_0 = \sqrt[6]{2}e^{i\frac{\pi}{12}}, \quad z_1 = \sqrt[6]{2}e^{i\frac{9\pi}{12}} = \sqrt[6]{2}e^{i\frac{3\pi}{4}}, \quad z_2 = \sqrt[6]{2}e^{i\frac{17\pi}{12}}.$$

Passons maintenant à $z^3=1-i$. Cette équation consiste à trouver les racines $3^{\grave{e}mes}$ de 1-i. On a $|1-i|=\sqrt{2}$ et $\arg(1-i)=-\frac{\pi}{4}$ (on peut le voir à l'aide d'un dessin). Donc, $1-i=\sqrt{2}e^{i\left(-\frac{\pi}{4}+2k\pi\right)}$, avec $k\in\mathbb{Z}$. Amplifiant nos exposants par 1/3, on obtient $\sqrt{2}^{1/3}e^{i\left(\frac{-\pi}{12}+\frac{2k\pi}{3}\right)}=\sqrt[6]{2}e^{i\frac{-\pi+8k\pi}{12}}$. En prenant k=0,1,2, on trouve les solutions de $z^3=1-i$ (appelons les z_3 , z_4 et z_5 car z_0 , z_1 et z_2 sont déjà utilisés ci-dessus):

$$z_3 = \sqrt[6]{2}e^{i\frac{-\pi}{12}}, \quad z_4 = \sqrt[6]{2}e^{i\frac{7\pi}{12}}, \quad z_5 = \sqrt[6]{2}e^{i\frac{15\pi}{12}} = \sqrt[6]{2}e^{i\frac{5\pi}{4}}.$$

On conclut donc que les solutions de $z^6 - 2z^3 + 2 = 0$ sont

$$z_0 = \sqrt[6]{2}e^{i\frac{\pi}{12}}, \quad z_1 = \sqrt[6]{2}e^{i\frac{9\pi}{12}} = \sqrt[6]{2}e^{i\frac{3\pi}{4}}, \quad z_2 = \sqrt[6]{2}e^{i\frac{17\pi}{12}}$$
$$z_3 = \sqrt[6]{2}e^{i\frac{-\pi}{12}}, \quad z_4 = \sqrt[6]{2}e^{i\frac{7\pi}{12}}, \quad z_5 = \sqrt[6]{2}e^{i\frac{15\pi}{12}} = \sqrt[6]{2}e^{i\frac{5\pi}{4}}.$$

Méthode 2 : En complétant le carré, on obtient que notre équation est équivalente à

$$(z^3 - 1)^2 + 1 = 0$$
 \Leftrightarrow $(z^3 - 1)^2 = -1 = i^2$ \Leftrightarrow $z^3 = 1 \pm i$.

En cherchant les solutions de $z^3 = 1 \pm i$ comme dans la méthode 1, nous trouvons les solutions de $z^6 - 2z^3 + 2 = 0$.

Exercice 3.

Factoriser les polynômes suivants dans \mathbb{C} et, si possible, dans \mathbb{R} .

a)
$$p(z) = z^4 - 2z^3 + 11z^2 - 2z + 10$$
 (trouver une racine simple)

b)
$$p(z) = \frac{1}{2}z^3 - 4z^2 + 7z - 6$$
, $(p(6) = 0)$

c)
$$p(z) = z^3 - (3+3i)z^2 + (-2+9i)z + 6$$
 $(p(3) = 0)$

Solution.

a) En testant des valeurs simples, nous trouvons que z = i est une racine. Puisque les coefficients de p sont réels, nous en déduisons que z = -i est aussi une racine. Nous effectuons la division euclidienne de p par $(z - i)(z + i) = z^2 + 1$:

Ce qui nous donne

$$p(z) = (z^2 + 1)(z^2 - 2z + 10)$$

qui est la factorisation dans \mathbb{R} , puisque les deux polynômes de degré 2 sont irréductibles dans \mathbb{R} . Pour trouver sa factorisation dans \mathbb{C} , il nous reste à trouver les racines de $z^2-2z+10$, que nous trouvons par completion du carré :

$$0 = z^2 - 2z + 10 = z^2 - 2z + 1 + 9 = (z - 1)^2 + 9 \quad \Leftrightarrow \quad z - 1 = \pm 3i \quad \Leftrightarrow \quad z = 1 \pm 3i.$$

La factorisation dans \mathbb{C} est donc

$$p(z) = (z - i)(z + i)(z - 1 + 3i)(z - 1 - 3i).$$

b) Puisque z = 6 est une racine de p(z), on fait la division euclidienne de p(z) par z - 6.

On a donc

$$\frac{1}{2}z^3 - 4z^2 + 7z - 6 = \left(\frac{1}{2}z^2 - z + 1\right)(z - 6).$$

Factorisons maintenant $\frac{1}{2}z^2 - z + 1$ à l'aide de la méthode avec le discriminant.

On a $a=\frac{1}{2}$, b=-1, c=1. Le discriminant est $b^2-4ac=1-2=-1$. Les deux racines carrées de-1 sont $\pm i$. Ainsi, on obtient comme racines $de^{-1}z^2-z+1$,

$$z_1 = \frac{-b+i}{2a} = 1+i,$$
 $z_2 = \frac{-b-i}{2a} = 1-i.$

On conclut que

$$p(z) = \frac{1}{2}(z - 1 - i)(z - 1 + i)(z - 6).$$

c) Puisque z = 3 est une racine de p(z), on fait donc la division euclidienne de p(z) par z - 3.

On a donc

$$z^{3} - (3+3i)z^{2} + (-2+9i)z + 6 = (z^{2} - 3iz - 2)(z - 3)$$

Factorisons maintenant $z^2 - 3iz - 2$ à l'aide de la méthode avec le discriminant.

On a a = 1, b = -3i et c = -2. Le discriminant est $b^2 - 4ac = -9 + 8 = -1$. Les deux racines carées de -1 sont $\pm i$. Ainsi, les racines de $z^2 - 3iz - 2$ sont

$$z_1 = \frac{-b+i}{2a} = 2i,$$
 $z_2 = \frac{-b-i}{2a} = i.$

On conclut que

$$p(z) = (z - i)(z - 2i)(z - 3).$$

Exercice 4.

Vrai ou faux?

- a) Le polynôme $z^2 + 1$ divise $z^6 + 3z^4 + z^2 1$.
- b) Soient z_1, \ldots, z_n les racines complexes du polynôme $z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$. Alors on a $\prod_{j=1}^n z_j = (-1)^n a_0.$
- c) Il existe un entier $n \in \mathbb{N}^*$ tel que $(1+i\sqrt{3})^n$ soit purement imaginaire (c-à-d. sa partie réelle est nulle).
- d) Il existe un entier $n \in \mathbb{N}^*$ tel que $(1 i\sqrt{3})^n$ soit réel.

Solution.

a) VRAI.

En faisant une division polynomiale, on obtient que $z^6 + 3z^4 + z^2 - 1 = (z^2 + 1)(z^4 + 2z^2 - 1)$. $(z^2 + 1)$ est donc un diviseur de $(z^6 + 3z^4 + z^2 - 1)$.

b) VRAI.

Comme z_1, \ldots, z_n sont racines du polynôme, on a

$$z^{n} + a_{n-1}z^{n-1} + \dots + a_{0} = (z - z_{1})(z - z_{2}) \cdots (z - z_{n}).$$

En comparant les termes de degré zéro des deux côtés de l'expression, on trouve la relation $a_0 = (-z_1)(-z_2)\cdots(-z_n) = \prod_{j=1}^n (-z_j) = (-1)^n \prod_{j=1}^n z_j$, d'oú la formule de l'énoncé.

c) FAUX.

On calcule la puissance en utilisant la forme polaire

$$\left(1+i\sqrt{3}\right)^n = 2^n e^{i\frac{n\pi}{3}} = 2^n \left(\cos\left(n\frac{\pi}{3}\right) + i\sin\left(n\frac{\pi}{3}\right)\right).$$

Ce nombre est purement imaginaire si et seulement si $\cos(n\frac{\pi}{3}) = 0 \Leftrightarrow n\frac{\pi}{3} = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$ $\Leftrightarrow n = \frac{3}{2} + 3k$ avec $k \in \mathbb{Z}$. Or, comme n doit être un entier, cette dernière condition ne peut être satisfaite pour k entier. L'énoncé est donc faux.

d) VRAI.

En utilisant de nouveau la forme polaire on obtient

$$\left(1 - i\sqrt{3}\right)^n = 2^n e^{-i\frac{n\pi}{3}} = 2^n \left(\cos\left(n\frac{\pi}{3}\right) - i\sin\left(n\frac{\pi}{3}\right)\right).$$

Ce nombre est réel si et seulement si $\sin\left(n\frac{\pi}{3}\right) = 0 \Leftrightarrow n\frac{\pi}{3} = k\pi$ avec $k \in \mathbb{Z} \Leftrightarrow n = 3k$ avec $k \in \mathbb{Z}$. Ainsi en prenant par exemple n = 3, on a que $(1 - i\sqrt{3})^3 = 2^3\cos(\pi) = -8 \in \mathbb{Z}$.

Partie II: Limites de suites.

Définition. On dit qu'une suite $(a_n)_{n=1}^{\infty}$ converge (ou tend) vers $L \in \mathbb{R}$ si

$$\forall \varepsilon > 0, \ \exists N \ge 1, \ \{n \ge N \implies |a_n - L| \le \varepsilon\}.$$

On note alors

$$L = \lim_{n \to +\infty} a_n$$
 ou $a_n \to L$ (quand $n \to +\infty$).

Exercice 5.

Montrer à l'aide de la définition de la limite que :

a)
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$
 b) $\lim_{n \to +\infty} \frac{n^3 - 1}{2n^3 + 1} = \frac{1}{2}$ c) $\forall p > 0$, $\lim_{n \to +\infty} \frac{(-1)^n}{n^p} = 0$

Indications : 1) Il vous suffit de trouver un "seuil" $N \ge 1$ dépendant de ε qui satisfait la définition de limite.

2) On admettra sans démonstration que pour p > 0 (et donc en particulier pour $p = \frac{1}{2}$), la fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ définie par $f(x) = x^p$ est strictement croissante. C'est-à-dire, $\forall x, y \in \mathbb{R}_+, x < y \iff x^p < y^p$. On aura les outils pour le montrer à la fin du chapitre 6.

Solution.

La démarche est la suivante : fixer $\varepsilon > 0$, puis "isoler n" à partir de l'inégalité $|a_n - L| \le \epsilon$ pour en déduire un "seuil" $N \ge 1$. Ce n'est pas demandé, mais nous montrons dans ce corrigé que ce seuil satisfait bien la définition de limite.

a) Fixons $\varepsilon > 0$, et résolvons $\left| \frac{1}{\sqrt{n}} - 0 \right| \le \varepsilon$ pour n :

$$\left|\frac{1}{\sqrt{n}} - 0\right| \ \leq \ \varepsilon \ \Leftrightarrow \ \frac{1}{\sqrt{n}} \ \leq \ \varepsilon \ \Leftrightarrow \ 1 \ \leq \ \sqrt{n}\varepsilon \ \Leftrightarrow \ \frac{1}{\varepsilon} \ \leq \ \sqrt{n} \ \Leftrightarrow \ \frac{1}{\varepsilon^2} \ \leq \ n$$

On choisira donc $N:=\left\lceil \frac{1}{\varepsilon^2}\right\rceil$, où $\lceil x \rceil$ dénote la partie entière supérieure 1 de x.

Vérifions maintenant que N est un seuil convenable pour la définition de limite : $si n \geq N$, alors

$$n \ge N \quad \Longrightarrow \quad n \ge \left\lceil \frac{1}{\varepsilon^2} \right\rceil \ge \frac{1}{\varepsilon^2}$$
$$\implies \quad \varepsilon \ge \frac{1}{\sqrt{n}} = \left| \frac{1}{\sqrt{n}} - 0 \right|$$

qui est le résultat voulu.

^{1.} $\lceil x \rceil$ est le plus petit nombre entier tel que $x \leq \lceil x \rceil$. Par exemple $\lceil \pi \rceil = 4$, $\lceil 3/2 \rceil = \lceil 1.5 \rceil = 2$, $\lceil 14 \rceil = 14$, etc.

b) Fixons $\varepsilon > 0$ et résolvons $\left| \frac{n^3 - 1}{2n^3 + 1} - \frac{1}{2} \right| \le \varepsilon$ pour n:

$$\left| \frac{n^3 - 1}{2n^3 + 1} - \frac{1}{2} \right| \le \varepsilon \quad \Leftrightarrow \quad \left| \frac{-3}{2(2n^3 + 1)} \right| \le \varepsilon \quad \Leftrightarrow \quad \frac{3}{2(2n^3 + 1)} \le \varepsilon$$

$$\Leftrightarrow \quad \frac{3}{2\varepsilon} \le 2n^3 + 1 \quad \Leftrightarrow \quad \frac{3 - 2\varepsilon}{4\varepsilon} \le n^3$$

$$\Leftrightarrow \quad \sqrt[3]{\frac{3 - 2\varepsilon}{4\varepsilon}} \le n$$

On choisira donc $N := \max\left\{1; \left\lceil \sqrt[3]{\frac{3-2\varepsilon}{4\varepsilon}} \right\rceil\right\}$ (pour assurer que $N \ge 1$ si ε est trop grand). Vérifions maintenant que N est un seuil convenable pour la définition de limite : si $n \ge N$, alors

$$n \ge N \quad \Longrightarrow \quad n \ge \left\lceil \sqrt[3]{\frac{3-2\varepsilon}{4\varepsilon}} \right\rceil \ge \sqrt[3]{\frac{3-2\varepsilon}{4\varepsilon}}$$

$$\Longrightarrow \quad \varepsilon \ge \frac{3}{2(2n^3+1)} = \left| \frac{n^3-1}{2n^3+1} - \frac{1}{2} \right|$$

qui est le résultat voulu.

c) Fixons $\varepsilon > 0$ et résolvons $\left| \frac{(-1)^n}{n^p} - 0 \right| \le \varepsilon$ pour n:

$$\left| \frac{(-1)^n}{n^p} - 0 \right| \le \varepsilon \quad \Leftrightarrow \quad \frac{1}{n^p} \le \varepsilon \quad \Leftrightarrow \quad \frac{1}{\varepsilon} \le n^p \quad \Leftrightarrow \quad \frac{1}{\varepsilon^{1/p}} \le n$$

On choisira donc $N:=\left\lceil \frac{1}{\varepsilon^{1/p}}\right\rceil$, qui est bien défini, puisque $\epsilon>0$.

 $V\'{e}rifions\ maintenant\ que\ N\ est\ un\ seuil\ convenable\ pour\ la\ d\'{e}finition\ de\ limite: si\ n\geq N,\ alors$

$$n \ge N \quad \Longrightarrow \quad n \ge \left\lceil \frac{1}{\varepsilon^{1/p}} \right\rceil \ge \frac{1}{\varepsilon^{1/p}}$$
$$\implies \quad \varepsilon \ge \frac{1}{n^p} = \left| \frac{(-1)^n}{n^p} - 0 \right|$$

qui est le résultat voulu.