Exercice (A déposer sur Moodle au plus tard le 17 octobre à 23h59). Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a

$$\sum_{j=1}^{n+1} j \, 2^j = n \, 2^{n+2} + 2.$$

Partie I: Racines et polynômes complexes

Exercice 1.

Déterminer toutes les racines complexes suivantes et les représenter graphiquement.

a) Les racines 5-èmes de 1.

- c) Les racines 4-èmes de -2i
- b) Les racines carrées de -5 + 12i
- d) Les racines cubiques de $-\sqrt{3} + i$

Exercice 2.

Résoudre les équations suivantes dans $\mathbb C$:

a)
$$z^2 + 6z + 12 - 4i = 0$$

b)
$$z^6 - 2z^3 + 2 = 0$$

Exercice 3.

Factoriser les polynômes suivants dans $\mathbb C$ et, si possible, dans $\mathbb R$.

a)
$$p(z) = z^4 - 2z^3 + 11z^2 - 2z + 10$$
 (trouver une racine simple)

b)
$$p(z) = \frac{1}{2}z^3 - 4z^2 + 7z - 6$$
, $(p(6) = 0)$

c)
$$p(z) = \overline{z^3 - (3+3i)z^2 + (-2+9i)z + 6}$$
 $(p(3) = 0)$

Exercice 4.

Vrai ou faux?

- a) Le polynôme $z^2 + 1$ divise $z^6 + 3z^4 + z^2 1$.
- b) Soient z_1, \ldots, z_n les racines complexes du polynôme $z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$. Alors on a $\prod_{j=1}^n z_j = (-1)^n a_0.$
- c) Il existe un entier $n \in \mathbb{N}^*$ tel que $(1+i\sqrt{3})^n$ soit purement imaginaire (c-à-d. sa partie réelle est nulle).
- d) Il existe un entier $n \in \mathbb{N}^*$ tel que $(1 i\sqrt{3})^n$ soit réel.

Partie II: Limites de suites.

Définition. On dit qu'une suite $(a_n)_{n=1}^{\infty}$ converge (ou tend) vers $L \in \mathbb{R}$ si

$$\forall \varepsilon > 0, \ \exists N \ge 1, \ \{n \ge N \implies |a_n - L| \le \varepsilon\}.$$

On note alors

$$L = \lim_{n \to +\infty} a_n$$
 ou $a_n \to L$ (quand $n \to +\infty$).

Exercice 5.

Montrer à l'aide de la définition de la limite que :

a)
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

b)
$$\lim_{n \to +\infty} \frac{n^3 - 1}{2n^3 + 1} = \frac{1}{2}$$

b)
$$\lim_{n \to +\infty} \frac{n^3 - 1}{2n^3 + 1} = \frac{1}{2}$$
 c) $\forall p > 0$, $\lim_{n \to +\infty} \frac{(-1)^n}{n^p} = 0$

Indications: 1) Il vous suffit de trouver un "seuil" $N \geq 1$ dépendant de ε qui satisfait la définition de

2) On admettra sans démonstration que pour p>0 (et donc en particulier pour $p=\frac{1}{2}$), la fonction $f \colon \mathbb{R}_+ \to \mathbb{R}_+$ définie par $f(x) = x^p$ est strictement croissante. C'est-à-dire, $\forall x, y \in \mathbb{R}_+, \ x < y \iff x \in \mathbb{R}_+$ $x^p < y^p$. On aura les outils pour le montrer à la fin du chapitre 6.

Solutions.

1. a)
$$z_0 = 1$$
, $z_1 = e^{i\frac{2\pi}{5}}$, $z_2 = e^{i\frac{4\pi}{5}}$, $z_3 = e^{i\frac{6\pi}{5}}$, $z_4 = e^{i\frac{8\pi}{5}}$

b)
$$z_0 = 2 + 3i$$
 $z_1 = -2 - 3i$.

c)
$$z_0 = \sqrt[4]{2}e^{-i\frac{\pi}{8}}$$
, $z_1 = \sqrt[4]{2}e^{i\frac{3\pi}{8}}$, $z_2 = \sqrt[4]{2}e^{i\frac{7\pi}{8}}$, $z_3 = \sqrt[4]{2}e^{i\frac{11\pi}{8}}$
d) $z_0 = \sqrt[3]{2}e^{i\frac{5\pi}{18}}$, $z_1 = \sqrt[3]{2}e^{i\frac{17\pi}{18}}$, $z_2 = \sqrt[3]{2}e^{i\frac{29\pi}{18}}$

d)
$$z_0 = \sqrt[3]{2}e^{i\frac{5\pi}{18}}$$
, $z_1 = \sqrt[3]{2}e^{i\frac{17\pi}{18}}$, $z_2 = \sqrt[3]{2}e^{i\frac{29\pi}{18}}$

2. a)
$$z_1 = -2 + 2i$$
, $z_2 = -4 - 2i$

b)
$$z_0 = \sqrt[6]{2}e^{i\frac{\pi}{12}}$$
, $z_1 = \sqrt[6]{2}e^{i\frac{9\pi}{12}} = \sqrt[6]{2}e^{i\frac{3\pi}{4}}$, $z_2 = \sqrt[6]{2}e^{i\frac{17\pi}{12}}$, $z_3 = \sqrt[6]{2}e^{i\frac{-\pi}{12}}$, $z_4 = \sqrt[6]{2}e^{i\frac{7\pi}{12}}$, $z_5 = \sqrt[6]{2}e^{i\frac{15\pi}{12}} = \sqrt[6]{2}e^{i\frac{5\pi}{4}}$.

3. a)
$$p(z) = (z-i)(z+i)(z-1+3i)(z-1-3i) = (z^2+1)(z^2-2z+10)$$

b)
$$p(z) = \frac{1}{2}(z - 1 - i)(z - 1 + i)(z - 6) = (\frac{1}{2}z^2 - z + 1)(z - 6)$$

c)
$$p(z) = (z - i)(z - 2i)(z - 3)$$

4. Vrai, Vrai, Faux, Vrai.