
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2024
Gastpar & Urbanke September 16, 2024

Problem Set 2 (Graded) —Due Tuesday, Oct 1, before class starts
For the Exercise Sessions on September 17 and 24

Last name First name SCIPER Nr Points

Rules : You are allowed and encouraged to discuss these problems with your colleagues. However, you
are expected to write the final solutions yourself. If you collaborated on a homework, write down the
name of your collaborators and your sources. No points will be deducted for collaborations. Any evidence
of plagiarism, however, will be treated very seriously.

Note : Only some of the problems in this problem set will be graded, but these will not be revealed
beforehand. Therefore, you are expected to submit your solutions for all of the problems in this problem
set.

Assume log is base 2 for this problem set unless the problem says otherwise.

Problem 1: Bounded random variables are subgaussian

This problem is a guided proof of a slightly weakened version of Lemma 2.4.

(a) Prove the following inequality:

cosh(x) = (ex + e−x)/2 ≤ ex
2/2. (1)

(b) Using the previous inequality, give an upper bound on the moment generating function of a random
variable S that only takes the values +1 and −1, with equal probability.

Hint: The upper bound should depend on the parameter of the moment generating function.

(c) Consider any random variable X and let X ′ be a random variable independent of X, but with
exactly the same distribution. Show that

EX [eλ(X−E[X])] ≤ EX,X′ [eλ(X−X′)]. (2)

(d) Show that the random variables (X−X ′) and S(X−X ′), where S is as in Part (b) and assumed
independent of X and X ′, have the same distribution.

(e) From the previous part, we thus know that

EX,X′ [eλ(X−X′)] = ES,X,X′ [eλS(X−X′)]. (3)

Now assume that X is a bounded random variable, X ∈ [a, b]. Condition on X = x and X ′ = x′,
and take expectation over S. Observe that (x−x′)2 ≤ (b−a)2. Use this and your result from Part
(b) to further upper bound ES,X,X′ [eλS(X−X′)].

(f) Combine your results to give an upper bound on the moment generating function of a centered
bounded random variable X − E[X], where X ∈ [a, b].

Hint: The upper bound should depend on the parameter of the moment generating function as well
as a and b .

(g) Compare your result to Lemma 2.4. Discuss the differences.
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Solution 1. (a) To prove this inequality, we can proceed via the expansions of the exponential function.
Specifically,

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ . . .

e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+

x6

6!
− . . .

Adding up and dividing by 2,

cosh(x) = 1 +
x2

2!
+

x4

4!
+

x6

6!
. . .+

x2n

(2n)!
+ . . .

Expanding ex
2/2 via the standard expansion for ey,

ex
2/2 = 1 +

x2

2
+

x4

4 · 2!
+

x6

8 · 3!
. . .+

x2n

2nn!
+ . . .

A term-by-term comparison and noting that 2nn! ≤ (2n)! gives the claimed bound.

(b) Simply write out

E
[
eλS

]
=

∑
s

pS(s)e
λs =

1

2
eλ +

1

2
e−λ ≤ eλ

2/2.

(c) Write out using the independence of X and X ′

EX,X′ [eλ(X−X′)] = EX

[
EX′ [eλ(X−X′)]

]
.

Now, for the inner expectation, we apply Jensen’s inequality, noting that the exponential function
is convex:

EX′ [eλ(X−X′)] ≥ eEX′ [λ(X−X′)] = eλ(X−EX′ [X′]) = eλ(X−E[X]),

where we have used the linearity of expectation and the fact that X and X ′ have the same
distribution.

(d) For example, we can argue via the CDF. First, we observe that since X and X ′ are indistinguish-
able, we must have for any real number y

P(X −X ′ ≤ y) = P(X ′ −X ≤ y)

But then, by conditioning, we must have for any real number y

P(S(X −X ′) ≤ y) = P(S = 1)P((X −X ′) ≤ y) + P(S = −1)P(−(X −X ′) ≤ y)

= P(X −X ′ ≤ y),

which proves the claim.

(e) Following the instruction, we write

ES,X,X′ [eλS(X−X′)] = EX,X′

[
ES [e

λS(X−X′)]|X,X ′
]
.

Now, for any fixed values X = x and X ′ = x′, we have, using Part (b),

ES [e
λS(x−x′)] ≤ eλ

2(x−x′)2/2 ≤ eλ
2(b−a)2/2.

Hence,

EX,X′ [eλ(X−X′)] = ES,X,X′ [eλS(X−X′)] ≤ eλ
2(b−a)2/2.
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(f) Combining everything, we have

EX [eλ(X−E[X])] ≤ EX,X′ [eλ(X−X′)]

= ES,X,X′ [eλS(X−X′)]

≤ eλ
2(b−a)2/2.

(g) In the lecture notes, we have shown that for a bounded random variable X, the moment generating
function satisfies

EX [eλ(X−E[X])] ≤ e
λ2(b−a)2

8 .

So, the proof above establishes also that bounded random variables are subgaussian, but with
a suboptimal parameter: the argument developed here says that bounded random variables are
(b−a)2 -subgaussian, where with the more intricate argument from your homework, you can actually
show that they are (b− a)2/4 -subgaussian. Needless to say, for many proofs, these two results are
equally interesting, and there is only a small gain to be had from the factor of 4 improvement in
the exponent.

Problem 2: Axiomatic definition of entropy

Let (p1, p2, . . . , pm) be such that pi ≥ 0 for i = 1, . . . ,m and
∑

i pi = 1 . Let

Hm(p1, . . . , pm) = −
m∑
i=1

pi log pi (4)

be the entropy of (p1, p2, . . . , pm) .

(a) (Grouping property) Prove that

Hm(p1, p2, p3, . . . , pm) = Hm−1(p1 + p2, p3, . . . , pm) + (p1 + p2)H2

(
p1

p1 + p2
,

p2
p1 + p2

)
.

Also prove it for grouping pi and pj for any arbitrary pair of indices (i, j) . This property models
the fact that the uncertainty in choosing among m objects should be equal to the uncertainty in
first choosing a subgroup of the objects, and then choosing an object in the selected subgroup.

(b) Prove that if a sequence of functions Fm of probability vectors (p1, p2, . . . , pm) , is such that for
every m ≥ 2 ,

1. Fm(p1, p2, . . . , pm) is continuous in the pi ’s,

2. Fm(p1, p2, . . . , pm) satisfies the grouping property (a),

3. Fm( 1
m , . . . , 1

m ) = logm

then Fm must be equal to the entropy (4) (under the usual convention 0 log 0 = 0 ).

Hint: Suppose that the p′is are rational, i.e., pi =
ni

n for some positive integers {ni}i=1,...,m . Show
using (a) recursively that

Fn

(
1

n
, . . . ,

1

n

)
= Fm

(n1

n
, . . . ,

nm

n

)
+

∑
i

ni

n
Fni

(
1

ni
, . . . ,

1

ni

)
.
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Solution 2. (a) Using (4), we can rewrite the right-hand side as

H(p1 + p2,p3, . . . , pm) + (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
= −(p1 + p2) log(p1 + p2)−

m∑
i=3

pi log pi + (p1 + p2)

(
− p1
p1 + p2

log
p1

p1 + p2
− p2

p1 + p2
log

p2
p1 + p2

)

= −(p1 + p2) log(p1 + p2)−
m∑
i=3

pi log pi − p1 log p1 − p2 log p2 + (p1 + p2) log(p1 + p2)

= −
m∑
i=1

pi log pi = H(p1, p2, p3, . . . , pm).

(b) It can be proved by induction that the grouping property holds for grouping an arbitrary number of
elements. Hence, using it recursively on F

(
1
m , . . . , 1

m

)
, we get

F

(
1

m
, . . . ,

1

m

)
= F

(m1

m
, . . . ,

mk

m

)
+
∑
i

mi

m
F

(
1

mi
, . . . ,

1

mi

)
.

Using property 3 on F
(

1
m , . . . , 1

m

)
and on each F

(
1
mi

, . . . , 1
mi

)
, we get

logm = F
(m1

m
, . . . ,

mk

m

)
+

∑
i

mi

m
logmi.

Rearranging the last equation gives

F
(m1

m
, . . . ,

mk

m

)
= −

∑
i

mi

m
log

mi

m
.

This proves the result for every rational probability vector. By using the continuity of F (property 1),
we can extend the result to any probability vector.

Problem 3: Conditional KL divergence

We saw in class that a probability kernel PY |X : X → Y is a matrix PY |X = PY |X(y|x) : x ∈ X , y ∈ Y
such that PY |X(y|x) ≥ 0 , and for each x ∈ X ,

∑
y PY |X(y|x) = 1 . Let PX ∈ Π(X ) be a probability dis-

tribution on X . We define the conditional KL divergence between two probability kernels PY |X : X → Y
and QY |X : X → Y given PX to be

D(PY |X∥QY |X |PX) ≜
∑
x∈X

PX(x)D(PY |X(·|x)∥QY |X(·|x))

where for every x , D(PY |X(·|x)∥QY |X(·|x)) is the standard KL divergence between the two distributions
PY |X(·|x) and QY |X(·|x) over Y .

(a) (Chain rule of the KL divergence) Show that

D(PX,Y ∥QX,Y ) = D(PX∥QX) +D(PY |X∥QY |X |PX)

where PX,Y and QX,Y are two joint distributions on X×Y such that PX,Y (x, y) = PX(x)PY |X(y|x)
and QX,Y (x, y) = QX(x)QY |X(y|x) .

(b) Using (a), show that
D(PY |X∥QY |X |PX) = D(PX,Y ∥QX,Y )

where PX,Y (x, y) = PX(x)PY |X(y|x) and QX,Y (x, y) = PX(x)QY |X(y|x) .
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(c) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class,
show that

D(PY ∥QY ) ≤ D(PY |X∥QY |X |PX)

where PY (y) =
∑

x∈X PX(x)PY |X(y|x) and QY (y) =
∑

x∈X PX(x)QY |X(y|x) .

Solution 3. (a)

D(PXY ∥QXY ) =
∑
x,y

PXY (x, y) log
PXY (x, y)

QXY (x, y)

=
∑
x,y

PX(x)PY |X(y|x) log
PX(x)PY |X(y|x)
QX(x)QY |X(y|x)

=
∑
x,y

PX(x)PY |X(y|x) log PX(x)

QX(x)
+

∑
x,y

PX(x)PY |X(y|x) log
PY |X(y|x)
QY |X(y|x)

= D(PX∥QX) +
∑
x

PX(x)D(PY |X(·|x)∥QY |X(·|x)) = D(PX∥QX) +D(PY |X∥QY |X |PX).

(b)
D(PXY ∥QXY ) = D(PX∥PX) +D(PY |X∥QY |X |PX) = D(PY |X∥QY |X |PX).

(c) Define the kernel

W (ỹ|x, y) =

{
1, if ỹ = y,

0, otherwise.

Then we have PỸ (ỹ) =
∑

x,y PXY (x, y)W (ỹ|x, y) = PY (ỹ) and QỸ (ỹ) =
∑

x,y QXY (x, y)W (ỹ|x, y) =
QY (ỹ) . Hence, we have

D(PY |X∥QY |X |PX) = D(PXY ∥QXY ) ≥ D(PỸ ∥QỸ ) = D(PY ∥QY ).

where the equality follows from part (b) and the inequality follows from DPI.

Problem 4: Geometrical interpretation of mutual information

In the previous problem, we introduced the conditional KL divergence between two probability kernels
PY |X : X → Y and QY |X : X → Y given a distribution PX over X as

D(PY |X∥QY |X |PX) ≜
∑
x∈X

PX(x)D(PY |X(·|x)∥QY |X(·|x)),

where for every x ∈ X , D(PY |X(·|x)∥QY |X(·|x)) is the standard KL divergence between the two distri-
butions PY |X(·|x) and QY |X(·|x) over Y .

(a) Let X and Y be two random variables with joint distribution PXY = PXPY |X . Show that

I(X;Y ) =
∑
x∈X

PX(x)D(PY |X(·|x)∥PY )

where PY is the marginal distribution of Y . This formula shows that the mutual information
can be interpreted as a weighted average of the distances between the conditional distributions
PY |X(·|x) and the marginal distribution PY .

(b) Show that for any distribution QY on Y ,

I(X;Y ) = D(PY |X∥QY |PX)−D(PY ∥QY ).

You can think of this formula as a KL equivalent of the classical I(X;Y ) = H(Y )−H(Y |X) .
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(c) Show that
I(X;Y ) = min

QY

D(PY |X∥QY |PX).

According to this formula, the minimizing QY can be interpreted as the “center of gravity” of the
conditional distributions PY |X(·|x) , and the mutual information as its radius.

Solution 4. All the results can be proved working directly with the definitions of KL divergence and
mutual information. The following is a simple solution that makes use of the results proved in Homework
2, Problem 3.

(a)

I(X;Y ) = D(PXPY |X∥PXPY ) = D(PY |X∥PY |PX) =
∑
x∈X

PX(x)D(PY |X(·|x)∥PY ),

where the second equality is due to Homework 2, Problem 3(b).

(b)

D(PY ∥QY ) + I(X;Y ) = D(PY ∥QY ) +D(PX|Y ∥PX |PY )

= D(PXY ∥PXQY )

= D(PY |X∥QY |PX)

where the first equality is due to part (a) by exchanging the roles of X and Y , the second equality
is due to the chain rule of the KL divergence (Homework 2, Problem 3(a)), and the third equality
is again due to Homework 2, Problem 3(b).

(c) By part (b) we know that I(X;Y ) ≤ D(PY |X∥QY |PX) for every QY , since D(PY ∥QY ) ≥ 0 .
Hence, I(X;Y ) ≤ minQY

D(PY |X∥QY |PX) . The equality is achieved by picking QY = PY , for
which D(PY |X∥QY |PX) = D(PY |X∥PY |PX) = I(X;Y ) .

Problem 5: Entropy and combinatorics

Let n ≥ 1 and fix some 0 ≤ k ≤ n . Let p = k
n and let Tn

p ⊂ {0, 1}n be the set of all binary
sequences with exactly np ones (assume that np is an integer).

(a) Show that
log |Tn

p | = nh(p) +O(loge n)

where h(p) = −p loge p− (1− p) loge(1− p) is the binary entropy function.

Hint: Stirling’s approximation states that for every n ≥ 1 ,

e
1

12n+1

√
2πn

(n
e

)n

≤ n! ≤ e
1

12n

√
2πn

(n
e

)n

(b) Let Qn = Bernoulli(q)n be the i.i.d. Bernoulli distribution on {0, 1}n . Show that

logQn[Tn
p ] = −nd(p∥q) +O(loge n)

where d(p∥q) = p loge
p
q + (1− p) loge

1−p
1−q is the binary KL divergence.

Solution 5. (a) When p = 0 or 1 , we have |Tn
p | = 1 , or equivalently log |Tn

p | = 0 , so the result holds

trivially, since h(p) = 0 for p = 0, 1 . For p ̸= 0, 1 , we have that |Tn
p | =

(
n
np

)
= n!

(np)!(n(1−p))! . Using

Stirling’s approximation on the three factorials we get

1√
2πnp(1− p)

p−np(1− p)−n(1−p)e
1

12n+1−
1

12np−
1

12n(1−p) ≤ |Tn
p |

≤ 1√
2πnp(1− p)

p−np(1− p)−n(1−p)e
1

12n− 1
12np+1−

1
12n(1−p)+1 .
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By taking the log on each side, we get

nh(p)− 1

2
log(2πnp(1− p)) +

1

12n+ 1
− 1

12np
− 1

12n(1− p)
≤ log |Tn

p |

≤ nh(p)− 1

2
log(2πnp(1− p)) +

1

12n
− 1

12np+ 1
− 1

12n(1− p) + 1
.

Since 1
n ≤ p ≤ n−1

n and the same holds for 1− p , we can obtain the following (loose) bounds:

−1

2
log n+

1

2
log(2π) ≤ 1

2
log(2πnp(1− p)) ≤ 1

2
log n+

1

2
log(2π)

1

12n+ 1
− 1

12np
− 1

12n(1− p)
≥ −2

1

12n
− 1

12np+ 1
− 1

12n(1− p) + 1
≤ 1

so that we get

nh(p)− 1

2
log n− 1

2
log(2π)− 2 ≤ log |Tn

p | ≤ nh(p) +
1

2
log n− 1

2
log(2π) + 1

i.e., log |Tn
p | = nh(p) +O(log n) .

(b) We have

Qn[Tn
p ] =

(
n

np

)
qnp(1− q)n(1−p) = |Tn

p |qnp(1− q)n(1−p)

and therefore

logQn[Tn
p ] = log |Tn

p |+ np log q + n(1− p) log(1− q)

= nh(p) + np log q + n(1− p) log(1− q) +O(log n)

= −nd(p∥q) +O(log n)

where in the last step we used (a).

Problem 6: Sum of binomials

Looking at the part (a) previous problem, it can be seen that the entropy function is related to the
asymptotic value of the binomial coefficient by:

log

(
n

np

)
= nh(p) +O(loge n),

for n ≥ 1 and 0 ≤ p ≤ 1 , where h(p) ≜ −p loge p − (1 − p) loge(1 − p) is the binary entropy function.
We want to derive a similar bound for the sum of binomial coefficients.

(a) Fix 0 ≤ p ≤ 1/2 and let C be the set of all subsets of {1, 2, . . . , n} of size at most np . Let X be
a random variable uniformly distributed over C . Show that

H(X) ≤ nh(p).

Hint: Let (X1, X2, . . . , Xn) be a random vector such that for every i , Xi = 1 if i ∈ X , and
Xi = 0 otherwise. Argue that H(X) = H(X1, X2, . . . , Xn) .

(b) Using part (a), conclude that
⌊np⌋∑
i=0

(
n

i

)
≤ 2nh(p).
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(c) Using part (b), show that if Z ∼ Binomial(n, p = 1
2 ) , then

Pr
(∣∣∣Z − n

2

∣∣∣ ≥ cσ
)
≤ 21−c2/2

for every c ≥ 0 , where σ =
√
n
2 is the standard deviation of Z . Compare this bound with the

Hoeffding inequality for a σ2− subgaussian random variable we derived in class.

Hint: you can use (without proving it) the bound h(p) ≤ 1− 2
(
1
2 − p

)2
.

Solution 6. (a) There is a one-to-one correspondence between X and (X1, X2, . . . , Xn) : from the
value of X we can uniquely determine the value of (X1, X2, . . . , Xn) , and viceversa. Hence,
H(X) = H(X1, X2, . . . , Xn) . Then,

H(X) = H(X1, X2, . . . , Xn) ≤
n∑

i=1

H(Xi) = nH(X1)

where the last equality is due to symmetry.

Now, X takes values from the set C , therefore the expected cardinality of X is less than or equal
to np . Since the cardinality of X is equal to the sum of the indicator functions

∑n
i=1 1(Xi = 1) ,

we have np ≥ E(|X|) = E(
∑n

i=1 1(Xi = 1)) =
∑n

i=1 E(1(Xi = 1)) =
∑n

i=1 P (Xi = 1) using the
linarity of the expectation and properties of the indicator function.

Then, due to the symmetry, np geq
∑n

i=1 P (Xi = 1) = nP (X1 = 1) . And, P (X1 = 1) ≤ p follows.

Now, Pr(X1 = 1) ≤ p ≤ 1
2 , and therefore H(X1) ≤ h(p) . Hence, H(X) ≤ nh(p) .

(b)

H(X) = log|C| = log

⌊np⌋∑
i=0

(
n

i

)
≤ nh(p).

Hence,
⌊np⌋∑
i=0

(
n

i

)
≤ 2nh(p).

(c)

Pr

(∣∣∣Z − n

2

∣∣∣ ≥ c

√
n

2

)
= 2

(
1

2

)n

⌊
n
(

1
2−

c
2
√

n

)⌋∑
i=0

(
n

i

)
≤ 2

nh
(

1
2−

c
2
√

n

)
−n+1

≤ 2
n
(
1− c2

2n

)
−n+1

= 21−c2/2.

Now, let’s consider Hoeffding bound for comparison. Assume we are applying Hoeffding bound to
a σ2 -subgaussian random variable Z . We get:

Pr
(∣∣∣Z − n

2

∣∣∣ ≥ cσ
)
≤ 2e−

c2

2

Then, the bound that we showed is looser than the the Hoeffding bound.
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