
Information, Computation, Communication
Learning Python

Lists

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Loops and Iterable Objects in Python
range() returns a 'range' iterable object
for x in range(5):

print(x, end = " ")
0 1 2 3 4
each iteration gives us one number from the sequence

2CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

for item in [10, "icc", True]: # a list
print(item, end = " ")

10 icc True
each iteration gives us an element from the list

for c in "hello": # string, also an iterable object
print(c, end = " ")

h e l l o
each iteration gives us one character from the string

© kras99 / Adobe Stock

Agenda

• Definition
• Accessing list elements by index or by slicing
• List operations:

• Concatenation and repetition, membership
• Copy
• Examples: Traversing lists

• for <> in <>
• for <> in range <>

• List comprehension
• Homework

• List methods: growing, searching, sorting and reversing
• Modifying lists using slicing

Next topic: Nested loops and lists
3CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

What Are Lists?

• Lists are ordered collections of arbitrary objects:
numbers, strings, and even other lists!

• Lists are mutable (i.e., their elements can be changed)

• List syntax
Create a list called my_example_list and
assign arbitrary elements to it. For example:
my_example_list = [True, "ICC", -99.5, 0]
print(my_example_list)
[True, 'ICC', -99.5, 0]

4CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Creating Lists

• Previous example, creating a list of four elements:
my_example_list = [True, "ICC", -99.5, 0]

• Creating an empty list:
my_empty_list = []

5CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Square brackets mark
the beginning and

the end of a list

Commas separate
list elements

Accessing List Elements

6CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Accessing List Elements

• There are two ways to access list elements for reading them or
modifying them

• (1) Accessing by the index of the element
• Index is the element position (offset from the beginning) in the list
• Returns the element at the given index

• (2) Accessing by slicing
• Similar to accessing by index, except that

we specify a range of indices between start and stop-1
• Can return more than a single element, i.e., a "slice" of a list

7CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Accessing List Elements by Index

• List elements are ordered by their position (index) in the list
• Indices may be nonnegative (most common) but also negative

8CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

0 1 2 3Nonnegative Index

-4 -3 -2 -1Negative Index

l = [True, "ICC", -99.5, 0]

EX
A

M
PL

ES

Examples: Accessing List Elements by Index

• The index of an element determines its position in the list

9CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

l = [True, "ICC", -99.5, 0]

print(l[1]) # print an element
ICC

l[2] += 1 # modify an element
print(l[2])
-98.5

print(l[-4] – l[-1]) # compute
1

Accessing List Elements by Slicing

10

list_name[start:stop:step]

Step.
1, if omitted

From (inclusive).
0, if omitted and
step is positive

To (exclusive).
If omitted, the last element
(in the direction defined by
the polarity of the step).

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

stop value represents the first value that is not
in the selected slice. If step is 1 (the default),

the difference between stop and start is
the number of elements selected.

Slicing returns a list

Syntax for List Slicing

positive step; start < stop
x[low:high:step]
[x[low], x[low+step], x[low+2step], …, x[high-1]]
if (high-low)%step != 0, the endpoint is lower than high-1

negative step; start > stop, reverse order of traversal
x[high:low:step]
[x[high], x[high-step], x[high-2step]…, x[low+1]]
if (high-low)%step != 0, the endpoint is higher than low+1

11CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Examples: Accessing List Elements by Slicing

l[:]
[True, 'ICC', -99.5, 0]
l[2:4]
[-99.5, 0]
l[1::2]
['ICC', 0]
l[-1]
0
l[::-1]
[0, -99.5, 'ICC', True]
l[1::-1]
['ICC', True]

12CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

0 1 2 3

-4 -3 -2 -1

l = [True, "ICC", -99.5, 0]

© kras99 / Adobe Stock

List Operations
• Concatenation
• Repetition
• Membership Check

13CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Concatenation and Repetition

a = [0, 1.1, 2.2]
b = ['O', 'K', '!']
Concatenation using the addition operator
a + b
[0, 1.1, 2.2, 'O', 'K', '!’]

Repetition, using the multiplication operator
b * 2
['O', 'K', '!', 'O', 'K', '!']

14CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

List Membership Check

a = [0, 1.1, 2.2]
b = ['O', 'K', '!']
Membership check
0 in a
True
2 in b
False
'!' in b
True

15CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

List Copy with copy()

• We cannot copy a list by simply typing list2 = list1
• For reasons beyond the contents of this course,

list2 will only become another name for list1
• Changes in list1 are automatically reflected in list2 as well

• To copy a list, we can use the copy() method

my_list = [5, 'song', 'cello', 60.4, 'theater']
a_copy_of_my_list = my_list.copy()
now we have two independent lists

16CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Examples

17CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

EX
A

M
PL

ES

Example 1: Traversing a List (for < > in < >)

Write a piece of code that traverses a list, counts all strings in it,
and prints out the count

Example: my_list = [5, 'song', 'cello', 60.4, 'theater', 'scene', -6.20, True]
Expected result: 4

18CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Example 1: Traversing a List (for < > in < >)

Example: my_list = [5, 'song', 'cello', 60.4, 'theater', 'scene', -6.20, True]
Expected result: 4

my_list = [5, 'song', 'cello', 60.4,
'theater', 'scene', -6.20, True]

Start counting
n_strings = 0
for i in my_list: # Traverse the list

if type(i) is str: # True if element i is a string
n_strings += 1 # Update the count

print(n_strings)

19CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Example 2: Traversing a List (for <> in range<>)

Write a piece of code that traverses one list and returns another list,
which contains every element at an even index of the original list.

Example: in_list = [43, -32, -94, -10, -18, 33, -59]
Expected result: out_list = [43, -94, -18, -59]

Hint 1: Python has a built-in function len() which returns the number of items
in an object (e.g., characters in a string, elements in a list, etc.)

Hint 2: There is a method called append(), to insert an element at the end of
a list (e.g., out_list.append(new_element))

20CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Example 2: Traversing a List (for <> in range<>)

in_list = [43, -32, -94, -10, -18, 33, -59]
out_list = [] # Create an empty list to fill in

Traverse the list with range() and len()
for i in range(len(in_list)):

Consider only elements at even indices
if i % 2 == 0:

out_list.append(in_list[i])
print(out_list)
[43, -94, -18, -59]

21CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

List Comprehension

22CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

List Comprehension

23CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

List comprehension is an easy way to build a new list by applying
an expression to the items of an iterable object (i.e., a string, a list, …).

[f(x) for x in iterable_object]

Traverse
the object

Square brackets
indicate a list

Apply
an operation

to the loop variable x

EX
A

M
PL

ES

Examples: List Comprehension

range(start, stop, step)
[x**2 for x in range(1, 6, 2)]
[1, 9, 25]

[c*4 for c in 'SPAM']
['SSSS', 'PPPP', 'AAAA', 'MMMM']

[c.lower() for c in 'SWEET STRAWBERRIES']
['s', 'w', 'e', 'e', 't', ' ', 's', 't', 'r', 'a', 'w', 'b',
'e', 'r', 'r', 'i', 'e', 's']

24CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

Homework
Read the remaining slides,
do the examples,
learn…
and ask for help if needed!

25CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

List Methods
For the summary on all list methods, click here

26CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

List Methods: Growing

a = [0, 1.1, 2.2]

Appending (argument is a new element)
a.append(3.3) # [0, 1.1, 2.2, 3.3]

Extending (argument must be a list or a string)
a.extend([4.4, 5.5]) # [0, 1.1, 2.2, 3.3, 4.4, 5.5]

Inserting (1st arg. = index where the inserted el. will be)
(2nd argument = the element to insert)
a.insert(4, 0) # [0, 1.1, 2.2, 3.3, 0, 4.4, 5.5]

27CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic For the summary on all list methods, click here

Note: These methods modify the original list!

List Methods: Searching and Counting

a = [0, 1.1, 2.2]

Searching for an element
a.index(1.1) # 1
a.index(3.3) # ValueError: 3.3 is not in list

a = a * 2 # [0, 1.1, 2.2, 0, 1.1, 2.2]
Count the number of occurences
a.count(0) # 2
a.count(3.3) # 0

28CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic For the summary on all list methods, click here

List Methods: Sorting and Reversing Order

a = [0, 99, 3, 11, -5]
Sorting
a.sort() # increasing order of value
[-5, 0, 3, 11, 99]
a.sort(reverse = True) # decreasing order of value
[99, 11, 3, 0, -5]

Reversing order of elements
a = [0, 99, 3, 11, -5]
a.reverse()
[-5, 11, 3, 99, 0]

29CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic For the summary on all list methods, click here

Note: These methods modify the original list!

© kras99 / Adobe Stock

Modifying Lists Using Slicing

30CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Modifying Lists Using Slicing

Replacing list elements by slicing is a combination of two steps:

1. Deletion.
The slice you specify to the left of the assignment is deleted.
If you specify an empty slice, nothing will be deleted.

2. Insertion.
The new items to the right of the assignment operator are
inserted into the list left to place of the old (deleted) slice.

The number of inserted items does not have to match the number of
deleted items!

31CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

EX
A

M
PL

ES

Examples: Modifying Lists Using Slicing

crepes = ['eggs', 'milk', 'flour', 'sugar']
len(crepes) # 4

crepes[1:2] = [] # ['eggs', 'milk', 'flour', 'sugar']
len(crepes) # 3
crepes # ['eggs', 'flour', 'sugar’]

crepes[2:3] = ['milk', 'water', 'sugar']
len(crepes) # 5
crepes # ['eggs', 'flour', 'milk', 'water', 'sugar']

32CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

Summary of List methods

33CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

list.append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].
list.extend(L)
Append all the items in the given list to extend the list; this is equivalent to a[len(a):] = L.
list.insert(i, x)
Insert an item at a given position. The first argument is the index the inserted element will have in the new list, so
a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) inserts at the end of the list (because len(a) here is
the length of the list before inserting x).
list.remove(x)
Remove the first item from the list whose value is x. If there is no such item, it is an error.
list.pop([i])
Remove the item from the list in the given position and return it. If no index is specified, a.pop() removes and returns the last
item in the list. (The square brackets around the i in the method signature denote that the parameter is optional, not that you
should type square brackets at that position. You will see this notation frequently in the Python Library Reference.)
list.index(x)
Return the index in the first item list whose value is x. If there is no such item, it is an error.
list.count(x)
Return the number of times x appears in the list.
list.sort(): Sort the items of the list, in place.
list.reverse(): Reverse the elements of the list, in place.

34CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

35

Next topic:
Nested Loops and Lists

CS-119(h), Fall 2025, © EPFL, Mirjana Stojilovic

	Information, Computation, Communication�Learning Python
	Loops and Iterable Objects in Python
	Agenda
	What Are Lists?
	Creating Lists
	Accessing List Elements
	Accessing List Elements
	Accessing List Elements by Index
	Examples: Accessing List Elements by Index
	Accessing List Elements by Slicing
	Syntax for List Slicing
	Examples: Accessing List Elements by Slicing
	List Operations
	Concatenation and Repetition
	List Membership Check
	List Copy with copy()
	Examples
	Example 1: Traversing a List (for < > in < >)
	Example 1: Traversing a List (for < > in < >)
	Example 2: Traversing a List (for <> in range<>)
	Example 2: Traversing a List (for <> in range<>)
	List Comprehension
	List Comprehension
	Examples: List Comprehension
	Homework
	List Methods
	List Methods: Growing
	List Methods: Searching and Counting
	List Methods: Sorting and Reversing Order
	Modifying Lists Using Slicing
	Modifying Lists Using Slicing
	Examples: Modifying Lists Using Slicing
	Summary of List methods
	Slide Number 34
	Slide Number 35

