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Loops and Iterable Objects in Python
# range() returns a 'range' iterable object
for x in range(5):

print(x, end = " ")
# 0 1 2 3 4
# each iteration gives us one number from the sequence
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for  item in [10, "icc", True]: # a list
print(item, end = " ")

# 10 icc True
# each iteration gives us an element from the list

for c in "hello": # string, also an iterable object
print(c, end = " ") 

# h e l l o
# each iteration gives us one character from the string
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Agenda

• Definition
• Accessing list elements by index or by slicing
• List operations:

• Concatenation and repetition, membership
• Copy
• Examples: Traversing lists

• for <> in <>
• for <> in range <>

• List comprehension
• Homework

• List methods: growing, searching, sorting and reversing
• Modifying lists using slicing

Next topic: Nested loops and lists
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What Are Lists?

• Lists are ordered collections of arbitrary objects: 
numbers, strings, and even other lists!

• Lists are mutable (i.e., their elements can be changed)

• List syntax
# Create a list called my_example_list and
# assign arbitrary elements to it. For example:
my_example_list = [True, "ICC", -99.5, 0]
print(my_example_list)
# [True, 'ICC', -99.5, 0]
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Creating Lists

• Previous example, creating a list of four elements:
my_example_list = [True, "ICC", -99.5, 0]

• Creating an empty list:
my_empty_list = []
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Square brackets mark 
the beginning and

the end of a list

Commas separate
list elements



Accessing List Elements
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Accessing List Elements

• There are two ways to access list elements for reading them or  
modifying them

• (1) Accessing by the index of the element
• Index is the element position (offset from the beginning) in the list
• Returns the element at the given index

• (2) Accessing by slicing
• Similar to accessing by index, except that 

we specify a range of indices between start and stop-1
• Can return more than a single element, i.e., a "slice" of a list
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Accessing List Elements by Index

• List elements are ordered by their position (index) in the list
• Indices may be nonnegative (most common) but also negative
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0 1 2 3Nonnegative Index

-4 -3 -2 -1Negative Index

l = [True, "ICC", -99.5, 0]
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Examples: Accessing List Elements by Index

• The index of an element determines its position in the list
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l = [True, "ICC", -99.5, 0]

print(l[1]) # print an element
# ICC

l[2] += 1 # modify an element
print(l[2])
# -98.5

print(l[-4] – l[-1]) # compute
# 1



Accessing List Elements by Slicing

10

list_name[start:stop:step]

Step. 
1, if omitted

From (inclusive).
0, if omitted and 
step is positive

To (exclusive).
If omitted, the last element 
(in the direction defined by
the polarity of the step).
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stop value represents the first value that is not
in the selected slice. If step is 1 (the default), 

the difference between stop and start is
the number of elements selected.

Slicing returns a list



Syntax for List Slicing

# positive step; start < stop
x[low:high:step]
# [x[low], x[low+step], x[low+2step], …, x[high-1]]
# if (high-low)%step != 0, the endpoint is lower than high-1

# negative step; start > stop, reverse order of traversal
x[high:low:step]
# [x[high], x[high-step], x[high-2step]…, x[low+1]]
# if (high-low)%step != 0, the endpoint is higher than low+1
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Examples: Accessing List Elements by Slicing

l[:]
# [True, 'ICC', -99.5, 0]
l[2:4]
# [-99.5, 0]
l[1::2]
# ['ICC', 0] 
l[-1]
# 0
l[::-1]
# [0, -99.5, 'ICC', True]
l[1::-1]
# ['ICC', True]
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0 1 2 3

-4 -3 -2 -1

l = [True, "ICC", -99.5, 0]
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List Operations
• Concatenation
• Repetition
• Membership Check
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Concatenation and Repetition

a = [0, 1.1, 2.2]
b = ['O', 'K', '!']
# Concatenation using the addition operator
a + b
# [0, 1.1, 2.2, 'O', 'K', '!’]

# Repetition, using the multiplication operator
b * 2
# ['O', 'K', '!', 'O', 'K', '!']
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List Membership Check

a = [0, 1.1, 2.2]
b = ['O', 'K', '!']
# Membership check
0 in a
# True
2 in b
# False
'!' in b
# True
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List Copy with copy()

• We cannot copy a list by simply typing list2 = list1
• For reasons beyond the contents of this course, 

list2 will only become another name for list1
• Changes in list1 are automatically reflected in list2 as well

• To copy a list, we can use the copy() method

my_list = [5, 'song', 'cello', 60.4, 'theater']
a_copy_of_my_list = my_list.copy()
# now we have two independent lists
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Examples
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Example 1: Traversing a List (for < > in < >)

Write a piece of code that traverses a list, counts all strings in it,
and prints out the count

Example: my_list = [5, 'song', 'cello', 60.4, 'theater',  'scene', -6.20, True]
Expected result: 4
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Example 1: Traversing a List (for < > in < >)

Example: my_list = [5, 'song', 'cello', 60.4, 'theater',  'scene', -6.20, True]
Expected result: 4

my_list = [5, 'song', 'cello', 60.4, 
'theater',  'scene', -6.20, True]

# Start counting
n_strings = 0
for i in my_list:        # Traverse the list

if type(i) is str:  # True if element i is a string
n_strings += 1    # Update the count

print(n_strings)
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Example 2: Traversing a List (for <> in range<>)

Write a piece of code that traverses one list and returns another list, 
which contains every element at an even index of the original list.

Example: in_list = [43, -32, -94, -10, -18, 33, -59]
Expected result: out_list = [43, -94, -18, -59]

Hint 1: Python has a built-in function len() which returns the number of items 
in an object (e.g., characters in a string, elements in a list, etc.)

Hint 2: There is a method called append(), to insert an element at the end of
a list (e.g., out_list.append(new_element))
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Example 2: Traversing a List (for <> in range<>)

in_list = [43, -32, -94, -10, -18, 33, -59]
out_list = []  # Create an empty list to fill in

# Traverse the list with range() and len()
for i in range(len(in_list)):

# Consider only elements at even indices
if i % 2 == 0:

out_list.append(in_list[i])
print(out_list)  
# [43, -94, -18, -59]
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List Comprehension
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List Comprehension
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List comprehension is an easy way to build a new list by applying
an expression to the items of an iterable object (i.e., a string, a list, …). 

[f(x) for x in iterable_object]

Traverse
the object

Square brackets 
indicate a list

Apply
an operation

to the loop variable x
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Examples: List Comprehension

# range(start, stop, step)
[x**2 for x in range(1, 6, 2)]
# [1, 9, 25]

[c*4 for c in 'SPAM'] 
# ['SSSS', 'PPPP', 'AAAA', 'MMMM']

[c.lower() for c in 'SWEET STRAWBERRIES']
# ['s', 'w', 'e', 'e', 't', ' ', 's', 't', 'r', 'a', 'w', 'b', 
'e', 'r', 'r', 'i', 'e', 's']
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Homework
Read the remaining slides,
do the examples,
learn…
and ask for help if needed!
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List Methods
For the summary on all list methods, click here
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List Methods: Growing

a = [0, 1.1, 2.2]

# Appending (argument is a new element)
a.append(3.3) # [0, 1.1, 2.2, 3.3]

# Extending (argument must be a list or a string)
a.extend([4.4, 5.5]) # [0, 1.1, 2.2, 3.3, 4.4, 5.5]

# Inserting (1st arg. = index where the inserted el. will be)
# (2nd argument = the element to insert)
a.insert(4, 0) # [0, 1.1, 2.2, 3.3, 0, 4.4, 5.5]
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Note: These methods modify the original list!



List Methods: Searching and Counting

a = [0, 1.1, 2.2]

# Searching for an element
a.index(1.1) # 1
a.index(3.3) # ValueError: 3.3 is not in list

a = a * 2 # [0, 1.1, 2.2, 0, 1.1, 2.2]
# Count the number of occurences
a.count(0) # 2
a.count(3.3) # 0
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List Methods: Sorting and Reversing Order

a = [0, 99, 3, 11, -5]
# Sorting
a.sort()  # increasing order of value
# [-5, 0, 3, 11, 99]
a.sort(reverse = True)  # decreasing order of value
# [99, 11, 3, 0, -5]

# Reversing order of elements
a = [0, 99, 3, 11, -5]
a.reverse() 
# [-5, 11, 3, 99, 0]
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Note: These methods modify the original list!
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Modifying Lists Using Slicing
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Modifying Lists Using Slicing

Replacing list elements by slicing is a combination of two steps:

1. Deletion. 
The slice you specify to the left of the assignment is deleted.
If you specify an empty slice, nothing will be deleted.

2. Insertion.
The new items to the right of the assignment operator are 
inserted into the list left to place of the old (deleted) slice.

The number of inserted items does not have to match the number of 
deleted items!
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Examples: Modifying Lists Using Slicing

crepes = ['eggs', 'milk', 'flour', 'sugar']
len(crepes) # 4

crepes[1:2] = [] # ['eggs', 'milk', 'flour', 'sugar']
len(crepes) # 3
crepes # ['eggs', 'flour', 'sugar’]

crepes[2:3] = ['milk', 'water', 'sugar']
len(crepes) # 5
crepes # ['eggs', 'flour', 'milk', 'water', 'sugar']
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Summary of List methods
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list.append(x)
Add an item to the end of the list; equivalent to a[len(a):] = [x].
list.extend(L)
Append all the items in the given list to extend the list; this is equivalent to a[len(a):] = L.
list.insert(i, x)
Insert an item at a given position. The first argument is the index the inserted element will have in the new list, so 
a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) inserts at the end of the list (because len(a) here is 
the length of the list before inserting x).
list.remove(x)
Remove the first item from the list whose value is x. If there is no such item, it is an error.
list.pop([i])
Remove the item from the list in the given position and return it. If no index is specified, a.pop() removes and returns the last 
item in the list. (The square brackets around the i in the method signature denote that the parameter is optional, not that you 
should type square brackets at that position. You will see this notation frequently in the Python Library Reference.)
list.index(x)
Return the index in the first item list whose value is x. If there is no such item, it is an error.
list.count(x)
Return the number of times x appears in the list.
list.sort(): Sort the items of the list, in place.
list.reverse(): Reverse the elements of the list, in place.
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Next topic:
Nested Loops and Lists
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