
Information, Computation, Communication

Learning Python

Lists

CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

Agenda

• Definition
• Accessing list elements by index or by slicing
• List operations:

• Concatenation and repetition, membership

• Examples: Traversing lists
• for <> in <>
• for <> in range <>

• List comprehension
• Homework

• List methods: growing, searching, sorting and reversing
• Modifying lists using slicing

Next topic: Nested loops and lists

2CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

What Are Lists?

• Lists are ordered collections of arbitrary objects:
numbers, strings, and even other lists!

• Lists are mutable (i.e., their elements can be changed)

• List syntax

Create a list called my_example_list and

assign arbitrary elements to it. For example:

my_example_list = [True, "ICC", -99.5, 0]

print(my_example_list)

[True, 'ICC', -99.5, 0]

3CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Creating Lists

• Previous example, creating a list of four elements:

my_example_list = [True, "ICC", -99.5, 0]

• Creating an empty list:

my_empty_list = []

4CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Square brackets mark
the beginning and

the end of a list

Commas separate
list elements

Accessing List Elements

5CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

Accessing List Elements

• There are two ways to access list elements for reading them or
modifying them

• (1) Accessing by the index of the element
• Index is the element position (offset from the beginning) in the list

• Returns the element at the given index

• (2) Accessing by slicing
• Similar to accessing by index, except that

we specify a range of indices between start and stop-1

• Can return more than a single element, i.e., a "slice" of a list

6CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Accessing List Elements by Index

• List elements are ordered by their position (index) in the list
• Indices may be nonnegative (most common) but also negative

7CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

0 1 2 3Nonnegative Index

-4 -3 -2 -1Negative Index

l = [True, "ICC", -99.5, 0]

E
X
A
M
P
L
E
S

Examples: Accessing List Elements by Index

• The index of an element determines its position in the list

8CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

l = [True, "ICC", -99.5, 0]

print(l[1]) # print an element
ICC

l[2] += 1 # modify an element
print(l[2])
-98.5

print(l[-4] – l[-1]) # compute
1

Accessing List Elements by Slicing

9

list_name[start:stop:step]

Step.

1, if omitted

From (inclusive).

0, if omitted and

step is positive

To (exclusive).

If omitted, the last element

(in the direction defined by

the polarity of the step).

CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

stop value represents the first value that is not
in the selected slice. If step is 1 (the default),

the difference between stop and start is
the number of elements selected.

Slicing returns a list

Syntax for List Slicing

positive step; start < stop

x[low:high:step]

[x[low], x[low+step], x[low+2step], …, x[high-1]]

if (high-low)%step != 0, the endpoint is lower than high-1

negative step; start > stop, reverse order of traversal

x[high:low:step]

[x[high], x[high-step], x[high-2step]…, x[low+1]]

if (high-low)%step != 0, the endpoint is higher than low+1

10CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Examples: Accessing List Elements by Slicing

l[:]

[True, 'ICC', -99.5, 0]

l[2:4]

[-99.5, 0]

l[1::2]

['ICC', 0]

l[-1]

0

l[::-1]

[0, -99.5, 'ICC', True]

l[1::-1]

['ICC', True]

11CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

0 1 2 3

-4 -3 -2 -1

l = [True, "ICC", -99.5, 0]

© kras99 / Adobe Stock

List Operations
• Concatenation

• Repetition

• Membership Check

12CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Concatenation and Repetition

a = [0, 1.1, 2.2]

b = ['O', 'K', '!']

Concatenation using the addition operator

a + b

[0, 1.1, 2.2, 'O', 'K', '!’]

Repetition, using the multiplication operator

b * 2

['O', 'K', '!', 'O', 'K', '!']

13CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

List Membership Check

a = [0, 1.1, 2.2]

b = ['O', 'K', '!']

Membership check

0 in a

True

2 in b

False

'!' in b

True

14CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Examples

15CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic © kras99 / Adobe Stock

E
X
A
M
P
L
E
S

Example 1: Traversing a List (for < > in < >)

Write a piece of code that traverses a list, counts all strings in it,
and prints out the count

Example: my_list = [5, 'song', 'cello', 60.4, 'theater', 'scene', -6.20, True]
Expected result: 4

16CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 1: Traversing a List (for < > in < >)

Example: my_list = [5, 'song', 'cello', 60.4, 'theater', 'scene', -6.20, True]
Expected result: 4

my_list = [5, 'song', 'cello', 60.4,

'theater', 'scene', -6.20, True]

Start counting

n_strings = 0

for i in my_list: # Traverse the list

if type(i) is str: # True if element i is a string

n_strings +=1 # Update the count

print(n_strings)

17CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 2: Traversing a List (for <> in range<>)

Write a piece of code that traverses one list and returns another list,
which contains every element at an even index of the original list.

Example: in_list = [43, -32, -94, -10, -18, 33, -59]
Expected result: out_list = [43, -94, -18, -59]

Hint 1: Python has a built-in function len() which returns the number of items
in an object (e.g., characters in a string, elements in a list, etc.)

Hint 2: There is a method called append(), to insert an element at the end of
a list (e.g., out_list.append(new_element))

18CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Example 2: Traversing a List (for <> in range<>)

in_list = [43, -32, -94, -10, -18, 33, -59]

out_list = [] # Create an empty list to fill in

Traverse the list

for i in range(len(in_list)):

Consider only elements at even indices

if i % 2 == 0:

out_list.append(in_list[i])

print(out_list)

[43, -94, -18, -59]

19CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

List Comprehension

20CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

List Comprehension

21CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

List comprehension is an easy way to build a new list by applying an
expression to the items of an iterable object (i.e., a string, a list, …).

[f(x) for x in iterable_object]

Traverse
the object

Square brackets

indicate a list

Apply
an operation

to the loop variable x

E
X
A
M
P
L
E
S

Examples: List Comprehension

range(start, stop, step)

[x**2 for x in range(1, 6, 2)]

[1, 9, 25]

[c*4 for c in 'SPAM']

['SSSS', 'PPPP', 'AAAA', 'MMMM']

[c.lower() for c in 'SWEET STRAWBERRIES']

['s', 'w', 'e', 'e', 't', ' ', 's', 't', 'r', 'a', 'w', 'b',
'e', 'r', 'r', 'i', 'e', 's']

22CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

Homework
Read the remaining slides,
do the examples,
learn…
and ask for help if needed!

23CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

© kras99 / Adobe Stock

List Methods
For the summary on all list methods, click here

24CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

List Methods: Growing

a = [0, 1.1, 2.2]

Appending (argument is a new element)

a.append(3.3) # [0, 1.1, 2.2, 3.3]

Extending (argument must be a list or a string)

a.extend([4.4, 5.5]) # [0, 1.1, 2.2, 3.3, 4.4, 5.5]

Inserting (1st arg. = index where the inserted el. will be)

(2nd argument = the element to insert)

a.insert(4, 0) # [0, 1.1, 2.2, 3.3, 0, 4.4, 5.5]

25CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic For the summary on all list methods, click here

Note: These methods modify the original list!

List Methods: Searching and Counting

a = [0, 1.1, 2.2]

Searching for an element

a.index(1.1) # 1

a.index(3.3) # ValueError: 3.3 is not in list

a = a * 2 # [0, 1.1, 2.2, 0, 1.1, 2.2]

Count the number of occurences

a.count(0) # 2

a.count(3.3) # 0

26CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic For the summary on all list methods, click here

List Methods: Sorting and Reversing Order

a = [0, 99, 3, 11, -5]

Sorting

a.sort() # increasing order of value

[-5, 0, 3, 11, 99]

a.sort(reverse = True) # decreasing order of value

[99, 11, 3, 0, -5]

Reversing order of elements

a = [0, 99, 3, 11, -5]

a.reverse()

[-5, 11, 3, 99, 0]

27CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic For the summary on all list methods, click here

Note: These methods modify the original list!

© kras99 / Adobe Stock

Modifying Lists Using Slicing

28CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Modifying Lists Using Slicing

Replacing list elements by slicing is a combination of two steps:

1. Deletion.
The slice you specify to the left of the assignment is deleted.
If you specify an empty slice, nothing will be deleted.

2. Insertion.
The new items to the right of the assignment operator are
inserted into the list left to place of the old (deleted) slice.

The number of inserted items does not have to match the number of
deleted items!

29CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

E
X
A
M
P
L
E
S

Examples: Modifying Lists Using Slicing

crepes = ['eggs', 'milk', 'flour', 'sugar']

len(crepes) # 4

crepes[1:2] = [] # ['eggs', 'milk', 'flour', 'sugar']

len(crepes) # 3

crepes # ['eggs', 'flour', 'sugar’]

crepes[2:3] = ['milk', 'water', 'sugar']

len(crepes) # 5

crepes # ['eggs', 'flour', 'milk', 'water', 'sugar']

30CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

Summary of List methods

31CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

list.append(x)

Add an item to the end of the list; equivalent to a[len(a):] = [x].

list.extend(L)

Append all the items in the given list to extend the list; this is equivalent to a[len(a):] = L.

list.insert(i, x)

Insert an item at a given position. The first argument is the index the inserted element will have in the new list, so
a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) inserts at the end of the list (because len(a) here is
the length of the list before inserting x).

list.remove(x)

Remove the first item from the list whose value is x. If there is no such item, it is an error.

list.pop([i])

Remove the item from the list in the given position and return it. If no index is specified, a.pop() removes and returns the last
item in the list. (The square brackets around the i in the method signature denote that the parameter is optional, not that you
should type square brackets at that position. You will see this notation frequently in the Python Library Reference.)

list.index(x)

Return the index in the first item list whose value is x. If there is no such item, it is an error.

list.count(x)

Return the number of times x appears in the list.

list.sort()

Sort the items of the list, in place.

list.reverse()

Reverse the elements of the list, in place. 32

33

Next topic:
Nested Loops and Lists

CS-119(h), Fall 2024, © EPFL, Mirjana Stojilovic

