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Exercise 1. Quiz. (15 points) Answer each yes/no question below (1 pt) and provide a short
justification (proof or counter-example) for your answer (2 pts).

a) Let B(R) be the Borel σ-field on R. Recall that Q denotes the set of all rational numbers. Is
Q ∈ B(R)?

Answer: Yes. Every singleton {x}, x ∈ R belongs to B(R). Also, since B(R) is a σ-field, every
countable union of sets in B(R) also belongs to B(R). Since Q is a countable union of real numbers,
Q ∈ B(R).

b) Let (Ω,F ,P) denote a probability space. Let X : Ω → R be an F−measurable random variable.
Is |X| also an F−measurable random variable?

Answer: Yes. The function g(x) = |x| is continuous and therefore it is Borel-measurable. Since
X is F-measurable and g is Borel-measurable, then g(X) = |X| is also F-measurable.

c) Is the converse of part b) true? That is, if |X| is an F−measurable random variable, then is X
an F−measurable random variable?

Answer: No. For example, let Ω = {−2,−1, 1, 2}, F = σ({−1, 1}), and X(ω) = ω. Then, |X| is
F-measurable, but X is not, since the set {X = −1} = {−1} does not belong to F .

d) Let X be a Gaussian random vector which is known to have the covariance matrix

Cov(X) =

1 0 1
0 1 1
1 1 2


Is X a continuous random vector?

Answer: No. The covariance matrix Cov(X) is not invertible, and so X is not a continuous
vector. For example X = (X1, X2, X1+X2) where X1 ∼ N (0, 1) and X2 ∼ N (0, 1) could be such a
vector. In particular, it will be supported on a hyperplane in 3D space which has Lebesgue measure
zero.

e) Let U ∼ Uniform[0, 1] and define

Xn = n1[0, 1√
n
](U), n = 1, 2, . . .
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Does Xn converge in probability to zero?

Answer: Yes. Observe that for any ϵ > 0

P (|Xn| ≥ ϵ) ≤ P
(
U ≤ 1√

n

)
=

1√
n
→ 0.

Exercise 2. (15 points)

Let Ω be an arbitrary set and F be a σ−field on Ω. In this problem we will show that if F is
infinite, it must be uncountable. We will proceed with proof by contradiction and assume that F
is countable.

a) For every ω ∈ Ω, define Bω =
⋂

A∈F : ω∈AA. Is Bω ∈ F? Why or why not?

Answer: We have assumed that F is countable. Thus, the collection of all the sets containing ω
i.e., Sω = {A : ω ∈ A} can be at most countable, as Sω ⊂ F . Further, note that the countable
intersection of sets in F is also an element of F . Thus, Bω := ∩Sω is an element of F .

b) Let C = {Bω}ω∈Ω be a collection of all such unique Bω. Argue that C partitions Ω and that it
is at most finite, or countable.

Answer: To show that Bω partitions F we need to show that: 1)∀ω1, ω2 ∈ Ω, we have Bω1∩Bω2 = ∅
or Bω1 = Bω2 , 2) that ∪ω∈ΩBω = Ω.

1) Suppose there exists ω2 ∈ Bω1 such that Bω1 ̸= Bω2 . Then, Bω1 ∩Bω2 is a strict subset of Bω2 or
it is exactly Bω2 . In the first case, it contradicts the fact that Bω2 is the smallest set in F containing
ω2. In the second case, it means that Bω2 is a proper subset of Bω1 which again contradicts the
fact that Bω1 is the smallest set in F containing ω1. Indeed, either ω1 ∈ Bω2 or ω1 ∈ Bω1 ∩Bc

ω2
.

2) Since every ω ∈ Ω is in some Bω, ∪ω∈ΩBω = Ω.

Since F is countable, and C is a subset of F it is either countable or finite.

c) Argue that σ(C) = F . That is, the σ-field generated by C is exactly F .

Answer:

For any A ∈ F we can show that A = ∪ω∈ABω. Indeed, A ⊂ ∪ω∈ABω is trivial. We can show
that ∪ω∈ABω ⊂ A by a similar argument as in part b). Assume that there exists ω1 ∈ ∪ω∈ABω

such that ω1 /∈ A. But then, either Bω1 ∩A = ∅ or Bω1 ∩A is a proper subset of Bω1 which again
contradicts the minimality of Bω1 for some ω2 ∈ Bω1 ∩A.

d) Conclude from parts (a) - (c) that there is a contradiction and it is not possible for F to be
countable.

Answer: Observe that we have shown that C is exactly the set of atoms that generates F and that
it is either finite or countable. By part b), a union of any subcollection of C produces a distinct
subset of F . Thus, if C is finite, it’s power set is also finite. If C is countable, its power set is
uncountable (See PSET 1, exercise 1). Either way, this contradicts the original assumption.
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Exercise 3. (14 points)

The moment-generating function of a random variable X is defined for any t ∈ R as

MX(t) = E
(
etX
)
.

(Notice that it is similar but not equal to the characteristic function of X!) Let X ∼ Bi(n, p)
where, recall that, the Binomial distribution with parameters (n, p) measures the probability of k
successes in n independent Bernoulli trials each with parameter p.

a) Prove that for every a ∈ R and t > 0,

P(X ≥ a) ≤ e−taMX(t).

Answer: The result follows directly from the Chebyshev-Markov inequality with ψ(x) = etx.

b) Show that
MX(t) = (pet + (1− p))n.

Answer: We can write X =
∑n

i=1Bi, where the Bi’s are n iid Bernoulli(p) random variables.
Then, for each Bi we have

E(etBi) = pet + 1− p

so that we have

MX(t) = E(etX)

= E(et
∑

Bi)

= E

(∏
i

etBi

)
=
∏
i

E(etBi)

= (pet + 1− p)n.

c) Using the inequality in part a) and optimizing over all t > 0, show that for any fixed q such that
p < q < 1,

P(X ≥ qn) ≤
(
p

q

)qn(1− p

1− q

)(1−q)n

.

Answer: By applying the inequality in part 1 to X with a = qn, we get

P(X ≥ gn) ≤
(
pet + 1− p

etq

)n

Since yn is an increasing function for y > 0, in order to optimize the right-hand side over t, we can
substitute z = et and optimize the function

pz + 1− p

zq
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over z > 0. By taking the derivative and putting it equal to 0, we get

pzq − qzq−1(pz + 1− p)

z2q
= 0 ⇐⇒ pz − pqz − q(1− p) = 0 ⇐⇒ z =

q

p
· 1− p

1− q
.

Substituting z = et in the right-hand side of the inequality leads to the result.

d) Using Markov inequality, show that

P(X ≥ qn) ≤ p

q

and compare this inequality with the one in part c).

Answer: We have that

E(X) = E

(∑
i

Bi

)
=
∑
i

E(Bi) = np

so that Markov inequality for a = qn becomes

P(X ≥ qn) ≤ E(X)

nq
=
np

nq
=
p

q
.

Note that the second inequality does not depend on n. This is in general bad. In fact, when n is
large we expect X to concentrate around np (its expectation). Since q > p, we therefore expect
that P(X ≥ qn) → 0 when n → ∞. This is indeed what we get from the first inequality: the
right-hand side goes to 0 when n→ ∞. However, the second inequality is just a constant for every
n, and therefore it is very loose when n is large.

Exercise 4. (14 points)

Let (Ω,F ,P) be a probability space with Ω = {(ω1, ω2) : ω1, ω2 ∈ {1, 2, . . . , n}} for some n ≥ 1,
F = P(Ω) and P(ω1, ω2) =

1
n2 for all (ω1, ω2) ∈ Ω.

a) Let X1 = ω1 + ω2. Describe σ({X1}), the σ-field generated by X1. How many atoms does it
have? What are they?

Answer: The atoms of σ({X1}) have the form Sj = {w1, w2 : w1 + w2 = j} for j = 2, . . . , 2n.
Thus, it has 2n− 1 atoms, and consists of 22n−1 subsets generated by every possible union of these
atoms.

b) Let X2 = ω1 − ω2. Are X1 and X2 independent? Why or why not?

Answer: No, X1 and X2 are not independent unless n = 1. For example,

P (X1 = 2, X2 = 0) = P ({(ω1, ω2) = (1, 1)}) = 1

n2
.

On the other hand

P (X1 = 2)P (X2 = 0) =
1

n2
· 1
n
.
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c) Let X = ω1, Z = 1{ω1=ω2}, and Y = 1{ω1+ω2=n+1}. Are X,Y, Z pairwise independent? Why or
why not?

Answer: It is always true that 1) X ⊥⊥ Z and X ⊥⊥ Y . 2) For n even Z and Y are not independent.
3) For n odd, we also have that Z ⊥⊥ Y .

1) X ⊥⊥ Z :

P (X = j, Z = 1) = P ({(ω1, ω2) = (j, j)}) = 1

n2
=

1

n
· 1
n
= P (X = j)P (Z = 1)

and

P (X = j, Z = 0) = P ({(ω1, ω2) = (j, k) : k ̸= j}) = n− 1

n2
=

1

n
· n− 1

n
= P (X = j)P (Z = 0)

Note that X ⊥⊥ Y follows by a completely symmetric argument.

2) For n odd Z and Y are not independent. We have

P (Z = 1, Y = 1) = 0 ̸= 1

n
· 1
n
= P (Z = 1)P (Y = 1)

3) For n odd, we also have that Z ⊥⊥ Y :

P (Z = 1, Y = 1) = P
({

(ω1, ω2) =

(
n+ 1

2
,
n+ 1

2

)})
=

1

n2
=

1

n
· 1
n
= P (Z = 1)P (Y = 1)

also

P (Z = 0, Y = 0) =
n2 − 2n+ 1

n2
=
n− 1

n
· n− 1

n
= P (Z = 0)P (Y = 0)

and

P (Z = 1, Y = 0) = P
({

(ω1, ω2) = (j, j), j ̸= n+ 1

2

})
=
n− 1

n2
=

1

n
· n− 1

n
= P (Z = 1)P (Y = 0) .

Finally, the case with P (Z = 0, Y = 1) follows by symmetry.
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