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Exercise 1. Quiz. (15 points) Answer each yes/no question below (1 pt) and provide a short
justification (proof or counter-example) for your answer (2 pts).

a) Let B(R) be the Borel o-field on R. Recall that Q denotes the set of all rational numbers. Is
Q € B(R)?

Answer: Yes. Every singleton {z},z € R belongs to B(R). Also, since B(R) is a o-field, every
countable union of sets in B(R) also belongs to B(R). Since Q is a countable union of real numbers,

Q € B(R).

b) Let (2, F,P) denote a probability space. Let X :  — R be an F—measurable random variable.
Is | X| also an F—measurable random variable?

Answer: Yes. The function g(x) = |z| is continuous and therefore it is Borel-measurable. Since
X is F-measurable and g is Borel-measurable, then g(X) = |X]| is also F-measurable.

c) Is the converse of part b) true? That is, if | X| is an F—measurable random variable, then is X
an F—measurable random variable?

Answer: No. For example, let Q@ = {-2,—-1,1,2}, F =o({—1,1}), and X (w) = w. Then, | X]| is
F-measurable, but X is not, since the set {X = —1} = {—1} does not belong to F.

d) Let X be a Gaussian random vector which is known to have the covariance matrix
1 01
Cov(X)=1(0 1 1
11 2

Is X a continuous random vector?

Answer: No. The covariance matrix Cov(X) is not invertible, and so X is not a continuous
vector. For example X = (X1, X2, X1 + X2) where X; ~ N(0,1) and X3 ~ N (0, 1) could be such a
vector. In particular, it will be supported on a hyperplane in 3D space which has Lebesgue measure
Zero.

e) Let U ~ Uniform[0, 1] and define

Xn:nl[o’\% U), n=12,...



Does X, converge in probability to zero?

Answer: Yes. Observe that for any € > 0

P(\anz@sp(Us\/lﬁ) -

Exercise 2. (15 points)

Let 2 be an arbitrary set and F be a o—field on ). In this problem we will show that if F is
infinite, it must be uncountable. We will proceed with proof by contradiction and assume that F
is countable.

a) For every w € Q, define B, = (4cr. wea A- Is By, € F7 Why or why not?

Answer: We have assumed that F is countable. Thus, the collection of all the sets containing w
ie, S, = {A:w € A} can be at most countable, as S, C F. Further, note that the countable
intersection of sets in F is also an element of F. Thus, B, := NS, is an element of F.

b) Let C = {B, }weqn be a collection of all such unique B,,. Argue that C partitions Q and that it
is at most finite, or countable.

Answer: To show that B, partitions F we need to show that: 1)Vwy,ws € 2, we have B, NBy, =
or B,, = By,, 2) that U,eqB,, = Q.

1) Suppose there exists we € By, such that B,,, # B,,. Then, B, N B,, is a strict subset of B, or
it is exactly B,,,. In the first case, it contradicts the fact that B,,, is the smallest set in F containing
wy. In the second case, it means that B,, is a proper subset of B, which again contradicts the
fact that By, is the smallest set in F containing wi. Indeed, either wy € By, or wy € By, N BE,.

2) Since every w € ) is in some By, Uy,cq B, = Q.
Since F is countable, and C is a subset of F it is either countable or finite.

c) Argue that o(C) = F. That is, the o-field generated by C is exactly F.

Answer:

For any A € F we can show that A = Uy,caB,. Indeed, A C UycaB,, is trivial. We can show
that U,eaB, C A by a similar argument as in part b). Assume that there exists w; € Uy,ea By,
such that wy ¢ A. But then, either B,, N A =0 or B, N A is a proper subset of B,, which again
contradicts the minimality of B,, for some wy € B,,, N A.

d) Conclude from parts (a) - (c) that there is a contradiction and it is not possible for F to be
countable.

Answer: Observe that we have shown that C is exactly the set of atoms that generates F and that
it is either finite or countable. By part b), a union of any subcollection of C produces a distinct
subset of F. Thus, if C is finite, it’s power set is also finite. If C is countable, its power set is
uncountable (See PSET 1, exercise 1). Either way, this contradicts the original assumption.



Exercise 3. (14 points)
The moment-generating function of a random variable X is defined for any ¢ € R as
Mx(t) =E (e'¥).

(Notice that it is similar but not equal to the characteristic function of X!) Let X ~ Bi(n,p)
where, recall that, the Binomial distribution with parameters (n,p) measures the probability of k
successes in n independent Bernoulli trials each with parameter p.

a) Prove that for every a € R and ¢t > 0,

P(X >a) < e "Mx(t).

Answer: The result follows directly from the Chebyshev-Markov inequality with ¢ (z) = e!*.
b) Show that
Mx(t) = (pe' + (1 - p))".

Answer: We can write X = Y " ;| B;, where the B;’s are n iid Bernoulli(p) random variables.
Then, for each B; we have
E(ePi) = pel +1—p

so that we have

Mx(t) = E(e"*)
= E(c! 2 B)

=K (H etB’)
= HE(etBi)

= (pet +1—-p)™

¢) Using the inequality in part a) and optimizing over all ¢ > 0, show that for any fixed ¢ such that

p<q<l,
qn _ (I—g)n
Pz = (2)" (122)
q 1—gq

Answer: By applying the inequality in part 1 to X with a = ¢qn, we get

pé-%l—p>"

P(X >gn) < < i

Since y™ is an increasing function for y > 0, in order to optimize the right-hand side over ¢, we can
substitute z = e! and optimize the function

pz+1—p
24



over z > 0. By taking the derivative and putting it equal to 0, we get

1-p

1—g¢q

pz?—qz" (pz + 1 —p)
224

=0 <= pz—pez—q(l—p) =0 <= z=

RSEES

Substituting z = e! in the right-hand side of the inequality leads to the result.
d) Using Markov inequality, show that

P(X >gn) <

SRS

and compare this inequality with the one in part c).

Answer: We have that
E(X)=E (Z BZ-) => E(B;) =np
i i
so that Markov inequality for a = gn becomes

P(X > gn) < E(X) = _P
nq ng g

Note that the second inequality does not depend on n. This is in general bad. In fact, when n is
large we expect X to concentrate around np (its expectation). Since g > p, we therefore expect
that P(X > gn) — 0 when n — oo. This is indeed what we get from the first inequality: the
right-hand side goes to 0 when n — co. However, the second inequality is just a constant for every
n, and therefore it is very loose when n is large.

Exercise 4. (14 points)

Let (Q, F,P) be a probability space with Q = {(w1,w2): wi,we € {1,2,...,n}} for some n > 1,
F =P(Q) and P(wy,wz) = -7 for all (w1,ws) € Q.

a) Let X = w1 + wo. Describe o({X1}), the o-field generated by X;. How many atoms does it
have? What are they?

Answer: The atoms of o({X1}) have the form S; = {wi,w2: w1 +wy = j} for j = 2,...,2n.
Thus, it has 2n — 1 atoms, and consists of 227~ subsets generated by every possible union of these
atoms.

b) Let X9 = w; —wo. Are X; and X5 independent? Why or why not?

Answer: No, X; and X5 are not independent unless n = 1. For example,

P(X) =2, Xs = 0) = P ({(wn,w) = (1,1)}) = %

On the other hand



c) Let X =wq, Z = Livi=wnys and Y = 1¢y 4 y—py1). Are XY, Z pairwise independent? Why or
why not?

Answer: It is always true that 1) X 1L Z and X 1l Y. 2) For n even Z and Y are not independent.
3) For n odd, we also have that Z 1L Y.

1) X 1 Z:
P(X=j,7=1) =F({(wr,e) = ()} = 5=+ =P(X =j)P(Z=1)
and
P(X=4,72=0)=P({(wrw) =GR k£ ="l = " Lop(x=j)P(Z=0)

Note that X 1L Y follows by a completely symmetric argument.
2) For n odd Z and Y are not independent. We have

IP’(Zzl,Yzl):07&%~%:P(Z:1)IP’(Y:1)

3) For n odd, we also have that Z 1L Y

n+1l n+1 1 1 1
P(Z=1Y=1)=P = =—S=—-—=PZ=1)P(Y =1
=1 =) =P ({re) = (L)) = p =1 Loz -nr -y
also
n?-2n+1 n-1 n-1
P(Z=0,Y=0)= = : =P(Z=0PY =0
(z=0y=0=""2 L Pz =0 (Y =0)
and

P(Z:LY:m=P({<w1,w2>=u,j>,j7ﬁ”‘2”}) e - JCRN LI

Finally, the case with P(Z = 0,Y = 1) follows by symmetry.



