......

Question 12

: Écrivez la fonction count_digits qui attend deux arguments:

- un entier positif n et
- une liste d de dix elements, tous initialisés à zéro.

Cette fonction doit compter le nombre de fois qu'un chiffre (0, 1, 2, ..., 9) apparaît dans le nombre $\tt n$ et remplir la liste $\tt d$ en conséquence. L'element de la liste $\tt d$ à l'indice i correspond au nombre d'occurrences du chiffre i. Pour un $\tt n$ négatif ou zéro, la fonction ne doit apporter aucune modification à la liste $\tt d$.

Exemples:

(1) count_digits(155027,d) aura comme effet:

$\mathbf{indice}\ i$	0	1	2	3	4	5	6	7	8	9
$\mathbf{d}[i]$	1	1	1	0	0	2	0	1	0	0

(2) count_digits(8285260,d) aura comme effet:

	0	1	2	3	4	5	6	7	8	9
$\mathbf{d}[i]$	1	0	2	0	0	1	1	0	2	0

(3) count_digits(1575559,d) aura comme effet:

$\mathbf{indice}\ i$	0	1	2	3	4	5	6	7	8	9
$\mathbf{d}[i]$	0	1	0	0	0	4	0	1	0	1

Question 13

: Écrivez une fonction pearson_corr qui attend deux arguments:

- \mathbf{x} , une première liste de n éléments et
- y, une deuxième liste de n éléments.

Votre fonction doit retourner le coefficient de corrélation de Pearson r, qui se calcule à l'aide de formule suivante :

$$r = \frac{\sum_{i=1}^{n} \left((x_i - \bar{x}) \cdot (y_i - \bar{y}) \right)}{\sqrt{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2 \right) \cdot \left(\sum_{i=1}^{n} (y_i - \bar{y})^2 \right)}}$$
(1)

où \bar{x} et \bar{y} sont les moyennes arithmétiques des listes x et y, respectivement:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}, \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$
 (2)

.....