

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 7 – Solutions

Exercise 1 (to be submitted by Thursday, 7.11.2024, 16:00):

(a) Let N and M_1, \ldots, M_k be smooth manifolds, where $k \geq 2$, and let $F_i: N \to M_i$ be smooth maps, where $1 \leq i \leq k$. Show that the map

$$
G\colon N\to \prod_{i=1}^k M_i, \ x\mapsto (F_1(x),\ldots,F_k(x))
$$

is smooth and that its differential at any point $p \in N$ is of the form

$$
(dG_p)(v) = (d(F_1)_p(v), \dots, d(F_k)_p(v)), \ v \in T_pN.
$$

- (b) Show that the quotient map $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R} \mathbb{P}^n$ is a smooth submersion, and that the kernel of its differential $d\pi_p: T_p(\mathbb{R}^{n+1} \setminus \{0\}) \to T_{[p]}\mathbb{R}\mathbb{P}^n$ is the subspace generated by p .
- (c) Let M be a non-empty, compact, smooth manifold. Show that there exists no smooth submersion $F: M \to \mathbb{R}^k$ for any $k \in \mathbb{Z}_{\geq 1}$.

Solution:

(a) The fact that G is smooth follows immediately from part (b) of [*Exercise Sheet* 3, Exercise 4, and the fact that the differential of G at $p \in N$ has the above form follows readily from part (b) of [Exercise Sheet 4, Exercise 1] and [Exercise Sheet 4, Exercise 3].

(b) From the solution to [Exercise Sheet 3, Exercise 5], we know that for every $0 \leq i \leq n$ there exists a smooth map $\Phi_i: U_i \to \mathbb{R}^{n+1} \setminus \{0\}$ such that $\pi \circ \Phi_i = \iota_{U_i}$, where ι_{U_i} is the inclusion of U_i into \mathbb{RP}^n . Write $p = (p^1, \ldots, p^{n+1})$ and for each $0 \le i \le n$ set $\widetilde{\Phi}_i = p^i \cdot \Phi_i$. Then we still have $\pi \circ \Phi_i = \iota_{U_i}$, and moreover $\Phi_i([p]) = p$. Hence,

$$
d\pi_p \circ d(\widetilde{\Phi}_i)_{[p]} = d(\iota_{U_i})_{[p]},
$$

and as the right hand side is an isomorphism, we infer that $d\pi_p$ is surjective. Therefore, π is a submersion.

Let us show that $p \in \text{ker} (d\pi_p)$. Let $f \in C^{\infty}(\mathbb{R}^p)$ be arbitrary, and let $D_p|_p$ be the directional derivative at p with direction p defined in [*Exercise Sheet 4, Exercise* 2]. Then

$$
d\pi_p\left(D_p|_p\right)(f) = D_p|_p(f \circ \pi) = \frac{d}{dt}\bigg|_{t=0} (f \circ \pi)(p+tp) = 0
$$

as $t \mapsto \pi(p + tp)$ is constant. By [*Exercise Sheet 4, Exercise 2*], $D_p|_p$ corresponds to p under the natural identification $T_p(\mathbb{R}^{n+1} \setminus \{0\}) \cong \mathbb{R}^{n+1}$. Thus, the kernel of $d\pi_p$ is generated by p.

 (c) Assume by contradiction that there exist a positive integer k and a smooth submersion $F: M \to \mathbb{R}^k$. Since M is compact and F is continuous, the image $F(M) \subseteq \mathbb{R}^k$ is also compact, and since \mathbb{R}^k is Hausdorff, we infer that $F(M)$ is a closed subset of \mathbb{R}^k . On the other hand, since F is a smooth submersion, it is an open map by Proposition 4.16, so the image $F(M)$ is an open subset of \mathbb{R}^k . But since \mathbb{R}^k is connected and $M \neq \emptyset$, it follows that $F(M) = \mathbb{R}^k$, which implies that \mathbb{R}^k is compact, a contradiction.

Exercise 2:

(a) Let M be a smooth manifold. Show that there exists a smooth map $f: M \to [0, +\infty)$ that is proper.

[Hint: Use a function of the form $f = \sum_{i=1}^{+\infty} c_i \psi_i$, where $(\psi_i)_{i=1}^{+\infty}$ is a partition of unity and the c_i 's are real numbers.]

(b) Let $F: M \to N$ be an injective smooth immersion between smooth manifolds. Show that there exists a smooth embedding $G: M \to N \times \mathbb{R}$.

[Hint: Use part (a) and Exercise 1(a).]

Solution:

(a) Since M is paracompact, there exists a countable, locally finite family $\mathfrak{U} = (U_i)_{i \in \mathbb{N}}$ of relatively compact (i.e., \overline{U}_i is compact for each $i \in \mathbb{N}$) open subsets of M such that $M = \bigcup_{i \in \mathbb{N}} U_i$. Consider now a smooth partition of unity $(\psi_i)_{i \in \mathbb{N}}$ subordinate to $\mathfrak U$ and the sequence $(c_i = i)_{i \in \mathbb{N}}$ of non-negative real numbers such that $\lim_{i \to \infty} c_i = +\infty$, and define the smooth function

$$
f: M \to \mathbb{R}, x \mapsto \sum_{i \in \mathbb{N}} c_i \psi_i(x) = \sum_{i \in \mathbb{N}} i \psi_i(x).
$$

We will show that f is proper. Observe that for any $k \in \mathbb{N}$ and any $x \notin U_1 \cup ... \cup U_k$, since supp $\psi_i \subseteq U_i$ and $\sum_{i \in \mathbb{N}} \psi_i(x) = 1$, we have

$$
f(x) = \sum_{i>k} i\psi_i(x) \ge (k+1) \sum_{i>k} \psi_i(x) = k+1,
$$

which implies (by contraposition) that $f^{-1}([0, k]) \subseteq U_1 \cup ... \cup U_k$ for any $k \in \mathbb{N}$. Thus, for any compact subset $K \subseteq \mathbb{R}$, the preimage $f^{-1}(K)$ is a closed subset of M and there exists $r_k \in \mathbb{N}$ such that $f^{-1}(K)$ is contained in some finite union $U_1 \cup \ldots \cup U_{r_k}$, and hence in the compact subset $\overline{U}_1 \cup \ldots \cup \overline{U}_{r_k}$ of M. It follows that $f^{-1}(K)$ is compact, as desired. (b) By part (a) there exists a smooth proper function $f: M \to \mathbb{R}$. Consider now the map

$$
G \colon M \to N \times \mathbb{R}, \ x \mapsto (F(x), f(x)),
$$

which is smooth and whose differential has the form $dG = (dF, df)$ by *Exercise* 1(a). Since F is injective, one immediately sees that G is also injective. Moreover, since F is a smooth immersion, and thus its differential dF_p is injective at every point $p \in M$, it follows readily that $dG_p = (dF_p, df_p)$ is also injective at every point $p \in M$. Consequently, G is an injective smooth immersion.

Next, we claim that G is a proper map. Given a compact subset $K \subseteq N \times \mathbb{R}$, we will show that $G^{-1}(K)$ is a compact subset of M. To this end, since $N \times \mathbb{R}$ is a Hausdorff space, K is in particular a closed subset of $N \times \mathbb{R}$, and since G is continuous, the preimage $G^{-1}(K)$ is a closed subset of M. Now, since the projection to the second factor $pr_2: N \times \mathbb{R} \to \mathbb{R}$ is continuous, the image $pr_2(K)$ is a compact subset of \mathbb{R} , and since f is proper by assumption, the preimage $f^{-1}(\text{pr}_2(K))$ is a compact subset of M, which contains the closed set $G^{-1}(K)$. Hence, $G^{-1}(K)$ is a compact subset of M, as claimed.

In conclusion, G is a smooth embedding by the above and by *Proposition 4.6*(b), as asserted.

Exercise 3 (Characteristic property of surjective smooth submersions): Let $\pi: M \to$ N be a surjective smooth submersion. Prove the following assertion: For any smooth manifold P, a map $F: N \to P$ is smooth if and only if the composite map $F \circ \pi: M \to P$ is smooth.

Solution: If F is smooth, then $F \circ \pi$ is also smooth by [*Exercise Sheet 3, Exercise 3*]. Conversely, assume that $F \circ \pi$ is smooth and let $q \in N$. Since π is surjective, there is $p \in M$ such that $\pi(p) = q$, and then Theorem 4.15 guarantees the existence of a neighborhood U of q in N and a smooth local section $\sigma: U \to M$ of π such that $\sigma(q) = p$. Then $\pi \circ \sigma = \text{Id}_U$ implies

$$
F|_{U} = F|_{U} \circ \mathrm{Id}_{U} = F|_{U} \circ (\pi \circ \sigma) = (F|_{U} \circ \pi) \circ \sigma,
$$

which is a composition of smooth maps. It follows from [Exercise Sheet 3, Exercise 2] and [*Exercise Sheet 3, Exercise 3*] that F is smooth.

Exercise 4: Let M and N be smooth manifolds, and let $\pi: M \to N$ be a surjective smooth submersion. Show that there is no other smooth manifold structure on N that satisfies the conclusion of *Exercise* 3; in other words, assuming that \tilde{N} represents the same set as N with a possibly different topology and smooth structure, and that for every smooth manifold P, a map $F: \overline{N} \to P$ is smooth if and only if $F \circ \pi$ is smooth, show that Id_N is a diffeomorphism between N and N.

Solution: Denote by Id_N , respectively $\mathrm{Id}_{\widetilde{N}}$, the identity map of N, respectively \widetilde{N} , with the smooth structure of N , respectively N , on both the source and the target. Denote also by Id_N \tilde{N} , respectively Id_{\tilde{N}}, the identity map, where on the source, respectively on the target, we put the smooth structure of N , and where on the target, respectively on the source, we put the smooth structure of N. In addition, denote by π_N , respectively $\pi_{\widetilde{N}}$, the surjective smooth submersion with the smooth structure of N, respectively of N, on the target. Now, note that

$$
\mathrm{Id}_{N,\widetilde{N}}\circ\pi_N=\pi_{\widetilde{N}},
$$

which is smooth, so by the assumption on N applied to $P = \tilde{N}$ and $F = Id_{N,\tilde{N}}$ we conclude that $\mathrm{Id}_{N\tilde{N}}$ is smooth. On the other hand, we also have

$$
\mathrm{Id}_{\widetilde{N},N}\circ\pi_{\widetilde{N}}=\pi_N,
$$

which is smooth, so by the assumption on \widetilde{N} applied to $P = N$ and $F = Id_{\widetilde{N}N}$ we conclude that $\operatorname{Id}_{\tilde{N},N}$ is smooth. Hence, $\operatorname{Id}_{N,\tilde{N}}$ is a diffeomorphism with inverse $\operatorname{Id}_{\tilde{N},N}^{N,N}$.

Exercise 5 (The converse of Exercise 3 is false): Consider the map

$$
\pi \colon \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto xy.
$$

Show that π is surjective and smooth, and that for each smooth manifold P, a map $F: \mathbb{R} \to P$ is smooth if and only if $F \circ \pi$ is smooth; but π is not a smooth submersion.

Solution: Both the smoothness and the surjectivity of π is clear. Therefore, if a map $F: \mathbb{R} \to P$ is smooth, then $F \circ \pi$ is also smooth by [*Exercise Sheet 3, Exercise 3*]. Now, assume that we have a smooth manifold P and a map of sets $F: \mathbb{R} \to P$ such that $F \circ \pi$ is smooth. Consider the map

$$
\iota \colon \mathbb{R} \to \mathbb{R}^2, \ x \mapsto (x, 1),
$$

which is clearly smooth and additionally satisfies $\pi \circ \iota = \mathrm{Id}_{\mathbb{R}}$. Hence, the map

$$
F = F \circ \mathrm{Id}_{\mathbb{R}} = (F \circ \pi) \circ \iota
$$

is smooth. Finally, note that the Jacobian of π is given by $(y \ x)$, which vanishes at $(x, y) = 0$, so π is not a smooth submersion.

Exercise 6 (Pushing smoothly to the quotient): Let $\pi: M \to N$ be a surjective smooth submersion. Prove the following assertion: If P is a smooth manifold and $F: M \to P$ is a smooth map that is constant on the fibers of π , then there exists a unique smooth map $\widetilde{F}: N \to P$ such that $\widetilde{F} \circ \pi = F$.

Solution: We define a set-theoretic function $\widetilde{F}: N \to P$ as follows: as π is surjective, there exists a set-theoretic right inverse $s: N \to M$, i.e., $\pi \circ s = \text{Id}_N$, and now we set $\widetilde{F} := F \circ s$. Let us verify that we indeed have $\widetilde{F} \circ \pi = F$. Let $x \in M$ be arbitrary. Then x and $s(\pi(x))$ both get mapped to $\pi(x)$ by π , and hence both are elements of the fiber $\pi^{-1}(\pi(x))$. Since F is constant on the fibers of π by hypothesis, we obtain

$$
\widetilde{F}(\pi(x)) = F(s(\pi(x))) = F(x).
$$

As $x \in M$ was arbitrary, we conclude that $\widetilde{F} \circ \pi = F$, as claimed. Clearly, \widetilde{F} is unique with this property: if \overline{F}' is any other such function, then

$$
\widetilde{F}' = \widetilde{F}' \circ \pi \circ s = F \circ s = F.
$$

Finally, as F is smooth, by Exercise 3 we conclude that \widetilde{F} is smooth.

Exercise 7 (Uniqueness of smooth quotients): Let $\pi_1: M \to N_1$ and $\pi_2: M \to N_2$ be surjective smooth submersions that are constant on each other's fibers. Show that there exists a unique diffeomorphism $F: N_1 \to N_2$ such that $F \circ \pi_1 = \pi_2$:

Solution: Since π_1 is a surjective smooth submersion and since π_2 is constant on the fibers of π_1 , by *Exercise* 6 there exists a unique smooth map $G_1: N_1 \to N_2$ such that $G_1 \circ \pi_1 = \pi_2$:

By reversing now the roles of π_1 and π_2 , we see that there exists a unique smooth map $G_2: N_2 \to N_1$ such that $G_2 \circ \pi_2 = \pi_1$:

We thus obtain the identities

$$
G_2 \circ G_1 \circ \pi_1 = \pi_1 \tag{*}
$$

and

$$
G_1 \circ G_2 \circ \pi_2 = \pi_2. \tag{**}
$$

Considering the diagram

and observing that $\mathrm{Id}_{N_1} \circ \pi_1 = \pi_1$, we deduce by (the uniqueness part of) Exercise 6 and (∗) that

$$
G_2\circ G_1=\mathrm{Id}_{N_1}.
$$

Considering now the corresponding diagram for π_2 and using (**) instead, we infer similarly that

$$
G_1 \circ G_2 = \mathrm{Id}_{N_2} \, .
$$

Hence, $F \coloneqq G_1 \colon N_1 \to N_2$ is a diffeomorphism such that $F \circ \pi_1 = \pi_2$, which is unique (with this property) by construction.