Exercice 1.

Pour tous les ensembles $A \subset \mathbb{R}$ suivants, déterminer, s'ils existent, l'infimum, le suprémum, le maximum et le minimum. En déduire si A est minoré, majoré ou borné (c'est à dire à la fois minoré et majoré).

a)
$$A = \{2 + (-1)^n : n \in \mathbb{N}\}$$

d)
$$A = \{2n - n^2 : n \in \mathbb{N}\}\$$

b)
$$A = \{2 + (-2)^n : n \in \mathbb{N}\}$$

e)
$$A = \{x : 2x - x^2 > 0\}$$

c)
$$A = \{2 + (-2)^{-n} : n \in \mathbb{N}\}$$

f)
$$A = \left\{ x : \frac{3-x}{x-x^2} \ge 0 \right\}$$

Exercice 2.

Soit $A \subset \mathbb{R}$ un **intervalle** borné non vide.

Vrai ou faux?

a)
$$\sup(A) \in A$$
 et $\inf(A) \in A$.

b) Si
$$\sup(A) \in A$$
 et $\inf(A) \in A$, alors A est fermé.

c) Si A est fermé, alors
$$\sup(A) \in A$$
 et $\inf(A) \in A$.

d) Si
$$\sup(A) \notin A$$
 et $\inf(A) \notin A$, alors A est ouvert.

e) Si A est ouvert, alors
$$\inf(A) \not\in A$$
 et $\sup(A) \not\in A$.

Exercice 3.

Trouver la partie réelle et la partie imaginaire des nombres complexes suivants :

a)
$$(2-3i)(3+2i)$$

d)
$$\frac{1}{1+i} + \frac{1}{1+2i} + \frac{1}{1+3i}$$

g)
$$(1 + \sqrt{3}i)^8$$

$$b) \frac{1}{i}$$

e)
$$\frac{2-3i}{2+i} + \frac{1-i}{1+3i}$$

h)
$$\frac{1 + ie^{\frac{3\pi}{2}i}}{(1 + e^{\frac{2\pi}{3}i})^2}$$

c)
$$\frac{2-3i}{4-5i}$$

d)
$$\frac{1}{1+i} + \frac{1}{1+2i} + \frac{1}{1+3i}$$
 g) $(1+\sqrt{3}i)^8$
e) $\frac{2-3i}{2+i} + \frac{1-i}{1+3i}$ h) $\frac{1+ie^{\frac{3\pi}{2}i}}{(1+e^{\frac{2\pi}{3}i})^2}$
f) $\left(\frac{10-15i}{2+i}\right)\left(\frac{1+i}{1-3i}\right)$ i) $\frac{(3+3i)^3}{(-2+2i)^2}$

i)
$$\frac{(3+3i)^3}{(-2+2i)^2}$$

Exercice 4.

Trouver le module et l'argument des nombres complexes suivants, et les exprimer sous forme polaire $z = |z|e^{i\arg(z)}$.

a)
$$-2$$

c)
$$-1 + i\sqrt{3}$$

e)
$$\frac{8i^{21} - 2i^{11}}{1 - i}$$

b)
$$2 + 2i$$

$$d) -1 + i \tan(3)$$

f)
$$i^{2025}$$

Exercice 5.

Démontrer les formules suivantes pour tout $z, z_1, z_2 \in \mathbb{C}$.

a)
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$

b)
$$|\overline{z}| = |z|$$
 et $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

c)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

Exercice 6.

a) A partir de la définition de l'exponentielle complexe, retrouver les formules d'Euler :

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
 et $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$.

En déduire les identités trigonométriques suivantes :

b)
$$\sin^2(x) + \cos^2(x) = 1$$

d)
$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

c)
$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

c)
$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$
 e) $2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) = \sin(x) - \sin(y)$

Solutions.

3. a)
$$12 - 5i$$

d)
$$\frac{4}{5} - i \frac{6}{5}$$

e) $-2i$
f) $3 + 2i$

g)
$$-128 + 128\sqrt{3}i$$

b)
$$-i$$

e)
$$-2a$$

h)
$$-1 - \sqrt{3}i$$

c)
$$\frac{23}{41} - i\frac{2}{41}$$

f)
$$3 + 2$$

i)
$$-\frac{27}{4} - \frac{27}{4}i$$

4. a)
$$2e^{i\pi}$$

c)
$$2e^{i\frac{2\pi}{3}}$$

e)
$$5\sqrt{2}e^{i\frac{3\pi}{4}}$$

b)
$$2\sqrt{2}e^{i\frac{\pi}{4}}$$

d)
$$\frac{-1}{\cos(3)}e^{-3i}$$

f)
$$e^{\frac{\pi}{2}i}$$