PUANTUM KET DISTRIBUTION \overline{O} QUANTUM KEY QUANTUM KEY DISTRIBUTION $\frac{1}{\sqrt{2}}$ This lecture is about the QKD protocol of Bennett and Brassand 1984 (BB84) PUANTUM KEY DISTRIBUTION)
This dechan is about the QKD fixture
of Bennett and Brassad 1974 (BB 84)
for the generation of a common one-time pad
staned by two distant packer Aline 4 Dob.
One-time pads: Huis is a sequence of for the generation of a common one-time pad One-time pads: this is a re -time pads: this is a sequence of seart bits $z_1 z_2 - z_1$, $z_2 z_2 + z_1 z_1$ shared by A & ^B (which are suppered to be sneved by $n \propto n$ (which ever support to be If A has a message m, m, m, m to communicate she encoder it as Z, OM, Z, OM, Z, Z, OM, and sends the sequence by B. Then B can decode it as $(z_i \oplus m_i) \oplus z_i = m_i$ (mod2)

 \bigcirc Information theoretically this is ^a same scheme if the one-time pad i . i . d uniformly random and is and only once . The trouble is how to distribute it to A & B and make sure it is not intercepted. The point of the QKD is that we do not Information Theoretically this is a more scheme

4 the overtime pad i.e.d uniformly rendom and

is end only once.

The trouble is how to distribute it to

A & B and make sum it is not intempted.

The point of the QKD is Ha directly in the labs of Information Theoretically this is a second scheme
1. The overtime pad did d uniformly rendom a
15 und only once.
17 The foint of the QKD is Hot in do not
17 The foint of the QKD is Hot in do not
distribute the one-time pad $\begin{array}{ccccc} & & & \text{bnd} & & \text{c} \\ A & & & \text{b} & & \end{array}$

 \bigcirc BB84 protocol for QKD
We will review the main p
1) Enceding phane of A $BB84$ pretoral for QKD We will review the main phanes 1) Enceding phane of A 2) Decoding phane of B 3) Public communication phase of ^A & B . 4) Generation of common senet bit sequence and The "security check". Finally we will version some possible attacks timelly we will veriew some possible ettecks

1) Enceding in A-les. · A generater a mit random i id requences of clessical bits $X_1 X_2 - X_2 \in \{0, 1\}$ (senet clareys) e_1 e_2 ... e_N \in { $a, 1$ } (senet for the . For $e_i = o$ A preparer a pubit $\{x_i\} \in \{10\}, 11\}$ (in the computational basis) . For e_i = 1 A prepare a public $H |x_i > 6 \frac{10}{\sqrt{2}} |1 > 10 > -11 > 6$ (in Hadamard basis) $H = \frac{1}{\sqrt{2}} \left(\frac{1}{1 - 1} \right)$

Remark: physically you can think about polarized states of photons for the publits. . A user polarizers aiented as

& To summerize : at each instant i⁼ ¹ --- ^N To summering
A has prep A has prepared ^a qubit (polarization state say) $i \wedge$ state $\frac{1}{x}$
 $i \wedge$ state $\frac{1}{x}$ e_c $\frac{1}{x}$: >. ີ
(ໂ $\{10\}$, 11), $\frac{16\sqrt{2} + 11}{\sqrt{2}}$, $\frac{10\sqrt{2} + 11}{\sqrt{2}}$. A send this qubit (photon) to B through a quantum channel (optic fiber, free space cam) 2) Decoding in B-lob. Bob receives the qubit (photon polerization) for each i ⁼ ¹ ... ^N . qubit (photon polerization)
He has no idea of the state. He does ^a measurement at each instant.

. Bob generetes au 1'id ans 7 vandons requence $d_1 d_2 \ldots d_N \in \{0,1\}$. . For dizo he chooses the measurement besig {10}, 11} to do hir measurement. His artput is His art put is

> los registrats of time

incoming state (1)

at time i . For di=1 he chooses the measurement basis $\{\frac{105+115}{5}, \frac{103-115}{5}, \frac{115}{5}, \text{at } p-t \text{ is }$ $\frac{1}{100 \text{ m/s}}$
 $\frac{1$ time i In summery his output state is \overrightarrow{H} / \overrightarrow{y})

Remark; physically you can think of the following

meconvenant process in Bot's let

 $efor di co$

1 ano 10)

 $-\int \alpha d\zeta = 1$

 $\begin{picture}(130,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

. In summery Bob's measurement leaver the photon in state H^{di}lg:) where Je Jr - Jr E {0, 1} is a random binoty seguence. According to the Meesnrement Principle un here Prob [to get H 1g; 's given that incoming plate is H 1g.)] = $\left| \left(q_{i} \right) H^{d_{i}} H^{e_{i}} \right|_{x_{i}} \right|^{2}$ We will use this later on

3) Public communication phase.

 \bigodot

Nous (and mot before!) A & B neveal over a public dossical communication line their encoding and decoding requesion $r_1 \dots r_N$ & d, ... ℓ_N . Anyboly may know there seprences. However mote Mat x, x, & j, - IN are NOT revealed, 4) Generation of one-time pod . If $e_i = d_i$ A & B keeps the bits x_i . and g: It tuns out that x: = g: Cas proved later) and will go in the one-time pad. . If $e_i \neq d_i$ A & B discard the bits x_i . and y'. It turns out that these may be different or equal (with prob /2 typically) and aventeles,

⑫

· Security Scarity check check : sout of i such that Ci=di (for which xi= gi) out of i such that $C_i = d_i$ (for which $x_i = y_i$)
A and B subot $\frac{2N}{2}$ such instants (0 < 5 << 1) and sacrifice (burn) the (x_i, y_i) by exchanging them one the public channet . Thus Mey check if indeed $x_i = y_i$. If Mi, let passes they conclude that the protocol has waked passes they conclude that the probact -> Essentially the security check tests of $\frac{1}{5N}$ # $\frac{1}{2}$ i e [$\frac{2N}{2}$] \leq {1... N } $s.t$ c_{i} = d_i $\left\{x_{i}$ 2) (2N/2) \approx 1 with \int sufficient accuracy". Remark: Noise of channel should be specified and low enough so not the tent distinguishe Noice from Ecresdroppen .

⑫ This whole protocol (phase 1-2-3-4) is justified by the following Lemme : $\frac{\mathsf{Lemma}}{\mathsf{Lemma}}$ $\begin{cases} 8ab (x_1 = y_1) e_1 = 1 \end{cases}$ ρ' ub L_{x} . $\neq \eta_{i}$ $|z_{i}=d_{i}|$ = 0 $\bigg\{$ $Prob (x_i > y_i)$ $e_i \neq d_i$ $f = \frac{1}{2}$ $Prob (x \neq y \mid c \neq d) = \frac{1}{2}$ $\frac{\rho_{\kappa_0}}{\rho}$ P_{rel} $(x_i - y_i | e_i = d_i)$ $=$ Prob ($x_i = 0$, $y_i = 0$ | $e_i = d_i$) + Prob ($x_i = 1$, $y_i = 1$ | $e_i = d_i$) = $\frac{1}{105}$ ($\frac{1}{100}$, $\frac{1}{100}$ $+ 126 (y^2 - 1) x^2 - 1, c^2 d^2)$ $165 (x^2 - 1) e^2 d^3$ $=$ Prob (y: = 0/x: = 0, e: = di) Prob (x: = 0) $+$ Prob ($y_i = 1 | x_i = 1$, $C_i = d_i$) Prob ($x_i = 1$)

 $N_{\rm{ow}}$ Reb($x:_{\rm{co}}$) = Preb($x:_{\rm{cl}}$) = $V_{\rm{2}}$, and by the meas principle : R_{e} , $C_{\chi_{i}^{c}$ σ_{o} χ_{i}^{c} σ_{o} , e_{i} σ_{d} ,) = $| \zeta e | H^{d} H^{e} | o \rangle |^{2} = | \zeta e | e \rangle |^{2} = 1$
1 facidi P reb $(\gamma_i = 1 | \lambda_i = 1, C_i = d_i)$ = $|(1) + |d_i e_i| |1\rangle|^2 = |(1|1)|^2 = 1.$ 1 fa e_{i} : d_{i} => $F_{ind}P_{\gamma}$ $P_{rob}(x_{i-1}, p_{i-1}) = 1.1 + 1.1 = 1.$

⑭ For the second case $e_i \neq d_i$ we proceed in the same way : $N(x_i = j_i | c_i \neq d_i) = N(\textbf{y}_i = 1 | x_i = 0)$ $c_i \neq d_i$) Proh $(x_i = 0)$ $+$ if $(y_i = 1 | x_i = 1, c_i \neq d_i)$ ilub $(c_i = 1)$ and by the meas principle : $P(y_i=|x_i=0, e_i \neq d) = |col H^{d_i}H^{e_i}|_{0} > |^{2}$ e_i \neq di e_i = H $=$ $|$ \leq ω $|$ $+$ $|$ ω $>$ $|$ \leq = $C_{c}z + c_{c} = 3 + c_{c} + c_{c} = H$
= $(C_{c}) + (C_{c}) + (C_{c}) + C_{c}$
= $(\frac{1}{2})^{2} (C_{c}) \rightarrow C_{c} + C_{c}$ 6 $=\frac{1}{\sqrt{2}}$
 $=\frac{1}{2}$ $P(y_i = 1 | x_i = 1, c_i \neq d_i) = 1 < 1/H d_i c_i / 1$ $=$ f < 1 / H|1)² $=\left(\frac{1}{2}\right)^{2}|\left(\frac{1}{2}\right)^{2}$ $\frac{16}{6}$ + $\frac{11}{4}$ = $=\frac{1}{2}$
= $\frac{1}{2}$
= $\frac{1}{2}$

Attack from an Earesdroppe. A complete discussion of security of the scheme goes well beyond these moter. One must inegime Not an certsdropper capturer photons on the guartum channel, processes them (with unitary codertions & meesuvements), sends them beck to Bob ent. The space of possible attacks is huge and here we just scratch the surface of Mis subject by analyzing a very simple type of attack. "Measurement attack" Continue of 1 9 row state (A)

 $\left(\begin{matrix} 16 \end{matrix}\right)$. Eve conturer photons in state : $H^{c'}(x, \cdot)$ Measurs in computational or Hadamand basis according to a random seguence she penerates $E_i E_1 ... E_N + \{0, 1\}$ Endre: she has No idea of Cidit sefore public The measurement leaver the photon in state; H^{ϵ_i} $|y_i^{\epsilon_{re}}\rangle$ \vdots $y_i^{\epsilon_{re}}$ ϵ_{o_i} Again, this can be done with an analyser + ptotodekector system and y' = of Delier, $y_i^{\epsilon_{rc}}=1$ of D does not clie], . State H^{ϵ_i} / $g_i^{\epsilon_{\kappa}}$ > is forwarded to Bob. . Bob Measnes as would [he doe not know what bappens on the guantum channel 3

and he gets a state H 1/2.) as before but this time with probability; <u>Lemma</u> $\left\{\n\begin{array}{l}\n\overrightarrow{P} & (x_{i} = y_{i} | e_{i} = d_{i}) = \frac{3}{7} \\
\overrightarrow{E}_{ve} & (x_{i} \neq y_{i} | c_{i} = d_{i}) = \frac{1}{7}\n\end{array}\n\right\}$ where More means the probability calculated

This lemme implier that the security probablis not passed after the public communication phase Since 1/4 of potential one-time-pard is course phod:

 $\frac{1}{2}$ # { $i \in [22]$ \subset $\{1-2\}$ \int f + $e_i = d_i$ $\mid x_i = y_i$ } $\begin{array}{ccccc} z & \frac{3}{7} & & \zeta & \frac{1}{1} \\ & & \zeta & & \zeta & \frac{1}{1} \\ & & & \zeta & & \zeta & \frac{1}{1} \\ & & & & \zeta & & \zeta & \frac{1}{1} \\ & & & & & \zeta & \frac{1}{1} \\ & & & & & & \zeta & \frac{1}{1} \\ & & & & & & & \zeta & \frac{1}{1} \\ & & & & & & & & \zeta & \frac{1}{1} \\ & & & & & & & & \zeta & \frac{1}{1} \\ & & & & & & & & & \zeta & \frac{1}{1} \\ & & & & & & & & & \zeta & \$ large gap detectelle gap. => [A & B just about protocol,]. $\frac{1}{\sqrt{1+\frac{1}{2}}\cdot\frac{1}{2}}$ Proof of Lemma (in presence of Fre) $P(x;2y;|c;zd;)$ $=\frac{\pi}{2}(\kappa_{12}q_{1}|e_{12}q_{1},\epsilon_{13}q_{1})\mathcal{E}_{1}(\epsilon_{13}q_{1})+\mathcal{E}_{13}q_{1}|e_{13}q_{1},\epsilon_{14}q_{1})$ V_2 . $\sqrt[n]{(\epsilon_1 + \epsilon_2)}$ $\frac{1}{\sqrt{2}}$ Giran Eisti we have $y_i^{\epsilon_k} = x_i$ (because photon is not perhubad), Thus

 $P(x_i, y_i | c_i = d_i, \epsilon_i = c_i) = \sqrt{2} \left(\frac{c_{ic}}{2} + \frac{c_{ic}}{2} + d_i \right)$ $=$ $\Big| < j_{i}$ $\Big|$ $\frac{d_{i}}{d}$ $\frac{d_{i}}{d}$ $\Big|$ $\frac{d_{i}}{d}$ $\Big|$ $\frac{d_{i}}{d}$ $\Big|$ = $(5; 15; 15)$ = 1. Given $\varepsilon_i \neq c_i$ we have $\eta_i^{\varepsilon_{\text{ice}}}$ and $\eta_i^{\varepsilon_{\text{ice}}}$ and η_i fiels V_2 . Thus $P(x_{i-2}, 1, 1, 2, 2, 1, 1, 1)$ = $P(g_i^{\epsilon_{re}}=g_i \mid \epsilon_i \neq d_i)$. $\frac{1}{2} + P(g_i^{\epsilon_{re}}\neq g_i \mid \epsilon_i \neq d_i)$. $\frac{1}{\sqrt{2}}$ $=$ $\frac{1}{2}$, $\frac{1}{2}$ + $\frac{1}{2}$, $\frac{1}{2}$ = $\frac{1}{2}$. Finally: P_{Ex} $(x_i = y_i | c_i = d_i) = 1. \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$ $=\frac{3}{4}$ 词

 \odot Empossibility of "copy photon" & recend attack. If we where in a classical would we could "Copy photon" & imagine that Eve captures the photon sent by Alive, imejoue that the captures the preton fent of Alive.
Copier it perfectly, and fends the original to Bob. She would then wait the public communication phase to them make measurement in the correct bessis" Ei ⁼ di Calweys) and get the same infamatic as $3-b$! (see hmw 3) Hower im 2 guantum world the NO CLONING THEOREM Ker as that it is imponible to copy a photon in one of the from states $|$ 10), THEOREM Kells as that it is

is comp a photon in one of the
 $\begin{Bmatrix} |0\rangle, & |1\rangle, & |0\rangle+|1\rangle, & |0\rangle-|1\rangle \\ \end{Bmatrix}$ with the same ("universal") unitary machine. The reason is that these states are not all mutually athogonal .