

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 7

Exercise 1 (to be submitted by Thursday, 7.11.2024, 16:00):

(a) Let N and M_1, \ldots, M_k be smooth manifolds, where $k \ge 2$, and let $F_i: N \to M_i$ be smooth maps, where $1 \le i \le k$. Show that the map

$$G: N \to \prod_{i=1}^{k} M_i, \ x \mapsto (F_1(x), \dots, F_k(x))$$

is smooth and that its differential at any point $p \in N$ is of the form

$$(dG_p)(v) = (d(F_1)_p(v), \dots, d(F_k)_p(v)), v \in T_pN.$$

- (b) Show that the quotient map $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ is a smooth submersion, and that the kernel of its differential $d\pi_p : T_p(\mathbb{R}^{n+1} \setminus \{0\}) \to T_{[p]}\mathbb{RP}^n$ is the subspace generated by p.
- (c) Let M be a non-empty, compact, smooth manifold. Show that there exists no smooth submersion $F: M \to \mathbb{R}^k$ for any $k \in \mathbb{Z}_{\geq 1}$.

Exercise 2:

(a) Let M be a smooth manifold. Show that there exists a smooth map $f: M \to [0, +\infty)$ that is proper.

[Hint: Use a function of the form $f = \sum_{i=1}^{+\infty} c_i \psi_i$, where $(\psi_i)_{i=1}^{+\infty}$ is a partition of unity and the c_i 's are real numbers.]

(b) Let $F: M \to N$ be an injective smooth immersion between smooth manifolds. Show that there exists a smooth embedding $G: M \to N \times \mathbb{R}$.

[Hint: Use part (a) and *Exercise* 1(a).]

Exercise 3 (Characteristic property of surjective smooth submersions):

Let $\pi: M \to N$ be a surjective smooth submersion. Prove the following assertion: For any smooth manifold P, a map $F: N \to P$ is smooth if and only if the composite map $F \circ \pi: M \to P$ is smooth.

Exercise 4:

Let M and N be smooth manifolds, and let $\pi: M \to N$ be a surjective smooth submersion. Show that there is no other smooth manifold structure on N that satisfies the conclusion of *Exercise* 3; in other words, assuming that \widetilde{N} represents the same set as N with a possibly different topology and smooth structure, and that for every smooth manifold P, a map $F: \widetilde{N} \to P$ is smooth if and only if $F \circ \pi$ is smooth, show that Id_N is a diffeomorphism between N and \widetilde{N} .

Exercise 5 (The converse of *Exercise* 3 is false): Consider the map

$$\pi \colon \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto xy$$

Show that π is surjective and smooth, and that for each smooth manifold P, a map $F \colon \mathbb{R} \to P$ is smooth if and only if $F \circ \pi$ is smooth; but π is not a smooth submersion.

Exercise 6 (*Pushing smoothly to the quotient*):

Let $\pi: M \to N$ be a surjective smooth submersion. Prove the following assertion: If P is a smooth manifold and $F: M \to P$ is a smooth map that is constant on the fibers of π , then there exists a unique smooth map $\widetilde{F}: N \to P$ such that $\widetilde{F} \circ \pi = F$.

Exercise 7 (Uniqueness of smooth quotients):

Let $\pi_1: M \to N_1$ and $\pi_2: M \to N_2$ be surjective smooth submersions that are constant on each other's fibers. Show that there exists a unique diffeomorphism $F: N_1 \to N_2$ such that $F \circ \pi_1 = \pi_2$:

