
Homework 4
Introduction to Quantum Information Processing

Exercise 1 Bennett 1992 Protocol for quantum key distribution

The analysis of BB84 shows that the important point is the use of non-orthogonal states.
BB92 retains this characteristic but simply uses two states instead of four.

• Encoding by Alice: Alice generates a random sequence e1, . . . , eN of bits that she
keeps secret. She sends to Bob the quantum bits |0⟩ if ei = 0 and H |0⟩ = 1√

2
(|0⟩+ |1⟩)

if ei = 1. The state of the quantum bit sent by Alice is thus Hei |0⟩.

• Decoding by Bob: Bob generates a random sequence d1, . . . , dN of bits that he keeps
secret. He measures the received quantum bit Hei |0⟩ in the basis {|0⟩ , |1⟩} (Z basis)
or in the basis {H |0⟩ , H |1⟩} (X basis) according to the value di = 0 or di = 1. So
the measurement basis of Bob is {Hdi |0⟩ , Hdi |1⟩}. He registers yi = 0 if the outcome
is Hdi |0⟩ (i.e. if it is |0⟩ or H |0⟩) and yi = 1 if the outcome is Hdi |1⟩ (i.e. if it is |1⟩
or H|1⟩).

• Public discussion phases: Bob announces on a public channel his measurement
outcome y1, . . . , yN .

• Secret key generation: You will propose it in question 3).

1) Prove that just after Bob’s measurements:

P (yi = 0|ei = di) = 1 P (yi = 1|ei = di) = 0

P (yi = 0|ei ̸= di) =
1

2
P (yi = 1|ei ̸= di) =

1

2

2) Deduce that P (ei = 1− di|yi = 1) = 1.
Hint: You can convince yourself that this is necessarily the case from the above proba-
bilities; but you can also prove it more in detail by using Bayes’ rule P (A|B) = P (A∪B)

P (B)
=

P (B|A)P (A)
P (B)

.

3) Based on the result in 2) propose a secret key generation scheme. Show that the secret
key has length ≈ N/4.

4) Propose a security check.
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Exercise 2 Copying or unitary attack from Eve in BB84

Consider the BB84 protocol. Suppose the i-th qubit sent by Alice is |0⟩+|1⟩√
2

and is captured
by Eve. Eve wants to make a copy of the qubit and sends one of the copies to Bob. However
she does not know what the preparation basis of Alice was: here we suppose that Eve uses
the wrong machine UZ to copy this bit. Recall that UZ is defined by

UZ |0⟩ ⊗ |b⟩ = |0⟩ ⊗ |0⟩ , UZ |1⟩ ⊗ |b⟩ = |1⟩ ⊗ |1⟩ .

Eve then keeps one of the photons and sends the other one to Bob. Suppose now that Bob
uses the X-basis to measure the state of the photon. During the public communication phase
Alice and Bob notice that their preparation and measurement basis were the same so they
conclude that the i-th bit (of their secret key) must be the same under the hypothesis that
Eve is not present (they don’t know yet that Eve is present).

The goal of this problem is to show that there is a probability 1/2 that the bit of Alice
and Bob differs due to the presence of Eve. Therefore repeated such attacks of Eve over
many qubits will be detectable during the security test.

1) What is the state of the two photons in the lab of Eve just after she made the copying
operation.

2) The measurement process of Bob (we suppose Eve does not measure at this stage) is
modeled by the two projectors:

Π+ = I ⊗
(
|0⟩+ |1⟩√

2

)(
⟨0|+ ⟨1|√

2

)
, Π− = I ⊗

(
|0⟩ − |1⟩√

2

)(
⟨0| − ⟨1|√

2

)

where I =

(
1 0
0 1

)
expresses the fact that Eve does not measure and the second term of

the tensor product expresses the fact that Bob’s measurement basis is
{

|0⟩+|1⟩√
2

, |0⟩−|1⟩√
2

}
.

a) What are the possible resulting states in Bob’s lab? Hint: no calculation.
b) Compute now p± the probability of these outcoming states by using the appropriate
form of the measurement postulate.
Hint: It may be a good idea to expand Π± by writing I = |0⟩ ⟨0|+ |1⟩ ⟨1|. For example
you should check this kind of identity:

Π+ = (|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗
(
|0⟩+ |1⟩√

2

)(
⟨0|+ ⟨1|√

2

)
= (|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗

(
|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|

2

)
=

1

2

(
|00⟩ ⟨00|+ |00⟩ ⟨01|+ |01⟩ ⟨00|+ |01⟩ ⟨01|

+ |10⟩ ⟨10|+ |10⟩ ⟨11|+ |11⟩ ⟨10|+ |11⟩ ⟨11|
)
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Exercise 3 Quantum bank note

In 1970’s Wiesner had the idea of quantum bank notes that cannot be copied. A quantum
bank note consists of one serial number S and of N small cavities each storing one quantum
bit (say a polarized photon, or some magnetic moment). Each quantum bit is in a definite
state

|ϕi⟩ ∈
{
|0⟩ ; |0⟩+ |1⟩√

2

}
, i = 1 . . . N.

The serial number S (say S = COM309HW7ISFUN) indicates to the bank the preparation
q1, . . . , qN of the quantum bits where qi = 0 if |ϕi⟩ = |0⟩ and qi = 1 if |ϕi⟩ = |0⟩+|1⟩√

2
. There is

a mapping f(S) = (q1 . . . qN) that only the bank knows. Therefore the bank has access to
the information q1, . . . , qN by reading S; but no one else has.

We decide to counterfeit the bill as follows:

• We first observe the state of each qubit using measurements in the Z or X basis at
random (since we have no information about qi). This necessarily leaves each qubit in
a state ∈ {|0⟩ , |1⟩} or in a state ∈

{
|0⟩+|1⟩√

2
, |0⟩−|1⟩√

2

}
.

• If the measured qubit is left in state |0⟩ or |0⟩+|1⟩√
2

we just copy it (with the correct copy
machine!).

• If the measured qubit is left in state |1⟩ then we prepare a new state as |0⟩+|1⟩√
2

. And if
it is left in the state |0⟩−|1⟩√

2
we prepare a new state |0⟩.

We thus get a “counterfeited” bill which we shall bring to the bank.

1) First suppose that a honest person brings a true bank note (not counterfeited) to the
bank. Describe how the bank proceeds to make measurements in order to verify the bank
note in such a way that the bank note is not destroyed.

2) Suppose that we bring a counterfeited note to the bank. What is the probability the
bank detects a problem ?
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