

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 6 – Solutions

Exercise 1:

(a) Prove the following assertions:

- (i) A composition of smooth submersions is a smooth submersion.
- (ii) A composition of smooth immersions is a smooth immersion.
- (iii) A composition of smooth embeddings is a smooth embedding.
- (b) Show by means of a counterexample that a composition of smooth maps of constant rank need not have constant rank.

Solution:

(a) First, we show (i). Let $F: M \to N$ and $G: N \to P$ be smooth submersions and fix $p \in M$. Then the composite map $G \circ F: M \to P$ is smooth by part (e) of [*Exercise Sheet* 3, *Exercise* 3], and by part (d) of [*Exercise Sheet* 4, *Exercise* 1] its differential at p is the linear map

$$d(G \circ F)_p = dG_{F(p)} \circ dF_p \colon T_p M \to T_{(G \circ F)(p)} P,$$

which is surjective, since both linear maps

 $dF_p: T_pM \to T_{F(p)}N$ and $dG_{F(p)}: T_{F(p)} \to T_{(G \circ F)(p)}$

are surjective by assumption. Since $p \in M$ was arbitrary, we conclude that $G \circ F$ is a smooth submersion.

Next, to prove (ii), we argue exactly as in (i), except that the word "surjective" is replaced by the word "injective".

Finally, we show (iii). Let $F: M \to N$ and $G: N \to P$ be smooth embeddings. By (ii) we know that the composite map $G \circ F: M \to P$ is a smooth immersion, so it remains to show that $G \circ F$ is a homeomorphism onto its image $(G \circ F)(M) \subseteq P$ in the subspace topology. To this end, note that F is a homeomorphism onto its image $F(M) \subseteq N$ in the subspace topology, and that G is a homeomorphism onto its image $G(N) \subseteq P$ in the subspace topology, so the restriction $G|_{F(M)}: F(M) \to G(F(M))$ is also a homeomorphism. Therefore, the composite map $G \circ F$ is a homeomorphism onto its image $(G \circ F)(M) \subseteq P$ in the subspace topology, as required. In conclusion, $G \circ F$ is a smooth embedding.

(b) Consider the maps

$$\gamma \colon (0, 2\pi) \to \mathbb{R}^2, \ t \mapsto (\cos t, \sin t)$$

and

$$\pi \colon \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto y.$$

By *Exercise* 2(a), π is a surjective smooth submersion. Moreover, observe that

$$\gamma(t_1) = \gamma(t_2) \implies t_1 = t_2$$

and

$$\|\gamma'(t)\| = \|(-\sin t, \cos t)\| = 1$$
 for all $t \in (0, 2\pi)$

so γ is an injective smooth immersion; see *Example 4.4*(1). Hence, both γ and π are smooth maps of constant rank. However, the composite map

$$\pi \circ \gamma \colon (0, 2\pi) \to \mathbb{R}, \ t \mapsto \sin t$$

does not have constant rank, because its derivative

$$(\pi \circ \gamma)' \colon (0, 2\pi) \to \mathbb{R}, \ t \mapsto -\cos t$$

vanishes for $t = \frac{\pi}{2}$ and $t = \frac{3\pi}{2}$.

Exercise 2:

- (a) Let M_1, \ldots, M_k be smooth manifolds, where $k \ge 2$. Show that each of the projection maps $\pi_i \colon M_1 \times \ldots \times M_k \to M_i$ is a smooth submersion.
- (b) Let M_1, \ldots, M_k be smooth manifolds, where $k \ge 2$. Choosing arbitrarily points $p_1 \in M_1, \ldots, p_k \in M_k$, for each $1 \le j \le k$ consider the map

$$\iota_j \colon M_j \to M_1 \times \ldots \times M_k, \ x \mapsto (p_1, \ldots, p_{j-1}, x, p_{j+1}, \ldots, p_k).$$

Show that each ι_j is a smooth embedding.

- (c) Examine whether the following plane curves are smooth immersions:
 - (i) $\alpha \colon \mathbb{R} \to \mathbb{R}^2, \ t \mapsto (t^3, t^2).$ (ii) $\beta \colon \mathbb{R} \to \mathbb{R}^2, \ t \mapsto (t^3 - 4t, t^2 - 4).$

If so, then examine also whether they are smooth embeddings.

(d) Show that the map

$$G: \mathbb{R}^2 \to \mathbb{R}^3, \ (u,v) \mapsto \left((2 + \cos 2\pi u) \cos 2\pi v, \ (2 + \cos 2\pi u) \sin 2\pi v, \ \sin 2\pi u \right)$$

is a smooth immersion.

Solution:

(a) Fix $i \in \{1, \ldots, k\}$ and $p = (p_1, \ldots, p_k) \in M_1 \times \ldots \times M_k$. By [Exercise Sheet 3, Exercise 4] we know that $\pi_i \colon M_1 \times \ldots \times M_k \to M_i$ is a smooth map, while by [Exercise Sheet 4, Exercise 3] we know that

$$T_p(M_1 \times \ldots \times M_k) \longrightarrow T_{p_1} M_1 \oplus \ldots \oplus T_{p_i} M_i \oplus \ldots \oplus T_{p_k} M_k$$
$$v \mapsto \left(d(\pi_1)_p(v), \ldots, d(\pi_i)_p(v), \ldots, d(\pi_k)_p(v) \right)$$

is an \mathbb{R} -linear isomorphism. Using the above identification, we infer that the differential of π_i at p,

$$d(\pi_i)_p: T_{p_1}M_1 \oplus \ldots \oplus T_{p_i}M_i \oplus \ldots \oplus T_{p_k}M_k \to T_{p_i}M_i$$

is surjective. Since $p \in M_1 \times \ldots \times M_k$ was arbitrary, we conclude that π_i is a smooth submersion.

(b) Fix $j \in \{1, ..., k\}$ and points $p_1 \in M_1, ..., p_{j-1} \in M_{j-1}, p_{j+1} \in M_{j+1}, ..., p_k \in M_k$. We have already seen in the solution of *[Exercise Sheet 4, Exercise 3]* that the map

$$\iota_j \colon M_j \to M_1 \times \ldots \times M_k, \ x \mapsto (p_1, \ldots, p_{j-1}, x, p_{j+1}, \ldots, p_k)$$

is smooth, and it is also clear that ι_i is a homeomorphism onto its image

$$\iota_j(M_j) = \{p_1\} \times \cdots \times \{p_{j-1}\} \times M_j \times \{p_{j+1}\} \times \cdots \times \{p_k\}.$$

Moreover, given a point $p_j \in M_j$, using the identification

$$T_p(M_1 \times \ldots \times M_k) \cong T_{p_1}M_1 \oplus \ldots \oplus T_{p_k}M_k \oplus \ldots \oplus T_{p_k}M_k,$$

where $p := (p_1, \ldots, p_{j-1}, p_j, p_{j+1}, \ldots, p_k) \in M_1 \times \ldots M_k$, we infer that the differential of ι_j at p,

$$d(\iota_j)_{p_j}: T_{p_j}M_j \to T_{p_1}M_1 \oplus \ldots \oplus T_{p_j}M_j \oplus \ldots \oplus T_{p_k}M_k,$$

is injective. In conclusion, ι_j is a smooth embedding.

(c) We first deal with (i). The map $\alpha(t) = (t^3, t^2), t \in \mathbb{R}$, is clearly smooth, but it is not an immersion, since $\alpha'(t) = (3t^2, 2t)$ vanishes at the point t = 0. Thus, α cannot be an embedding either.

We now deal with (ii). The map $\beta(t) = (t^3 - 4t, t^2 - 4), t \in \mathbb{R}$, is clearly smooth and its velocity vector $\beta'(t) = (3t^2 - 4, 2t), t \in \mathbb{R}$, is nowhere vanishing, so β is an immersion, see *Example 4.4*(1). However, the image curve $\beta(\mathbb{R})$ has a self-intersection for t = -2, t = 2, and hence β cannot be an embedding.

(d) The map G with component functions (G^1, G^2, G^3) is clearly smooth with Jacobian matrix

$$J_G(u,v) = \begin{pmatrix} \frac{\partial G^1}{\partial u}(u,v) & \frac{\partial G^1}{\partial v}(u,v) \\ \frac{\partial G^2}{\partial u}(u,v) & \frac{\partial G^2}{\partial v}(u,v) \\ \frac{\partial G^3}{\partial u}(u,v) & \frac{\partial G^3}{\partial v}(u,v) \end{pmatrix}$$
$$= \begin{pmatrix} -2\pi\sin(2\pi u)\cos(2\pi v) & -2\pi(2+\cos(2\pi u))\sin(2\pi v) \\ -2\pi\sin(2\pi u)\sin(2\pi v) & 2\pi(2+\cos(2\pi u))\cos(2\pi v) \\ 2\pi\cos(2\pi u) & 0 \end{pmatrix}.$$

The 2×2 submatrix

$$\begin{pmatrix} \frac{\partial G^1}{\partial u}(u,v) & \frac{\partial G^1}{\partial v}(u,v) \\ \frac{\partial G^2}{\partial u}(u,v) & \frac{\partial G^2}{\partial v}(u,v) \end{pmatrix} = \begin{pmatrix} -2\pi\sin(2\pi u)\cos(2\pi v) & -2\pi(2+\cos(2\pi u))\sin(2\pi v) \\ -2\pi\sin(2\pi u)\sin(2\pi v) & 2\pi(2+\cos(2\pi u))\cos(2\pi v) \end{pmatrix}$$

of J_G has determinant

$$D_{12}(u,v) \coloneqq -4\pi^2 \left(2 + \cos(2\pi u)\right) \sin(2\pi u),$$

the 2×2 submatrix

$$\begin{pmatrix} \frac{\partial G^1}{\partial u}(u,v) & \frac{\partial G^1}{\partial v}(u,v) \\ \frac{\partial G^3}{\partial u}(u,v) & \frac{\partial G^3}{\partial v}(u,v) \end{pmatrix} = \begin{pmatrix} -2\pi \sin(2\pi u)\cos(2\pi v) & -2\pi \left(2+\cos(2\pi u)\right)\sin(2\pi v) \\ 2\pi \cos(2\pi u) & 0 \end{pmatrix}$$

of J_G has determinant

$$D_{13}(u,v) \coloneqq 4\pi^2 \left(2 + \cos(2\pi u)\right) \cos(2\pi u) \sin(2\pi v),$$

and the 2×2 submatrix

$$\begin{pmatrix} \frac{\partial G^2}{\partial u}(u,v) & \frac{\partial G^2}{\partial v}(u,v) \\ \frac{\partial G^3}{\partial u}(u,v) & \frac{\partial G^3}{\partial v}(u,v) \end{pmatrix} = \begin{pmatrix} -2\pi\sin(2\pi u)\sin(2\pi v) & 2\pi(2+\cos(2\pi u))\cos(2\pi v) \\ 2\pi\cos(2\pi u) & 0 \end{pmatrix}$$

of J_G has determinant

$$D_{23}(u,v) \coloneqq -4\pi^2 (2 + \cos(2\pi u)) \cos(2\pi u) \cos(2\pi v).$$

Observe now that for each $(u, v) \in \mathbb{R}^2$, at least one of the determinants $D_{12}(u, v)$, $D_{13}(u, v)$ and $D_{23}(u, v)$ is non-zero, since $\cos(2\pi\theta)$ and $\sin(2\pi\theta)$ do not vanish simultaneously. This implies that $\operatorname{rk} (J_G(u, v)) = 2$ for all $(u, v) \in \mathbb{R}^2$; see the solution to part (c) of [Exercise Sheet 2, Exercise 3]. In conclusion, G is a smooth immersion, as claimed.

Exercise 3:

- (a) Show that the inclusion map $\iota \colon \mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$ is a smooth embedding.
- (b) Consider the map

 $F \colon \mathbb{R} \to \mathbb{R}^2, \ t \mapsto (2 + \tanh t) \cdot (\cos t, \sin t).$

- (i) Show that F is an injective smooth immersion.
- (ii) Show that F is a smooth embedding.

[Hint: Show that $F \colon \mathbb{R} \to U = \{x \in \mathbb{R}^2 \mid 1 < \|x\| < 3\}$ is a proper map.]

Solution:

(a) Consider the graph coordinates $(U_i^{\pm} \cap \mathbb{S}^n, \varphi_i^{\pm})$ for \mathbb{S}^n ; see *Example 1.10*(2). We have shown in *Example 2.12* that the inclusion map $\iota \colon \mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$ is smooth, because its coordinate representation with respect to any of the graph coordinates is

$$\hat{\iota}(u^1, \dots, u^n) = \left(u^1, \dots, u^{i-1}, \pm \sqrt{1 - \|u\|^2}, u^i, \dots, u^n\right),$$

which is smooth on its domain, the unit ball $\mathbb{B}^n = \{u = (u^1, \ldots, u^n) \in \mathbb{R}^n \mid ||u|| < 1\}$. The Jacobian matrix of the coordinate representation $\hat{\iota} = \iota \circ (\varphi_i^{\pm})^{-1}$ of ι with respect to the graph coordinates has the form

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 & \dots & 0 & 0 \\ \frac{\mp u^1}{\sqrt{1 - \|u\|^2}} & \frac{\mp u^2}{\sqrt{1 - \|u\|^2}} & \frac{\mp u^{i-1}}{\sqrt{1 - \|u\|^2}} & \frac{\mp u^{i+1}}{\sqrt{1 - \|u\|^2}} & \dots & \frac{\mp u^{n-1}}{\sqrt{1 - \|u\|^2}} & \frac{\mp u^n}{\sqrt{1 - \|u\|^2}} \\ 0 & 0 & \dots & 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} .$$

In particular, we observe that each of these $(n + 1) \times n$ matrices (which represent the differential of ι in coordinate bases) has rank n. Hence, ι is an injective smooth immersion. Since \mathbb{S}^n is compact, by *Proposition 4.6*(c) we conclude that ι is a smooth embedding.

(b) We first deal with (i). Clearly, F is smooth. Recall also that the function

$$t \in \mathbb{R} \mapsto ||F(t)|| = 2 + \tanh t$$

is strictly increasing, which implies that F is injective. Finally, to show that F is a smooth immersion, it suffices to show that $F'(t) \neq 0$ for every $t \in \mathbb{R}$. To this end, recall that

$$\frac{d}{dt}\tanh t = \frac{1}{\cosh^2 t}, \ t \in \mathbb{R},$$

so we have

$$F'(t) = \left(-(2 + \tanh t)\sin t + \frac{1}{\cosh^2 t}\cos t, (2 + \tanh t)\cos t + \frac{1}{\cosh^2 t}\sin t\right), \ t \in \mathbb{R},$$

and thus

$$||F'(t)||^2 = (2 + \tanh t)^2 + \frac{1}{\cosh^4 t} > 0 \text{ for all } t \in \mathbb{R},$$

which implies that $F'(t) \neq 0$ for every $t \in \mathbb{R}$, as desired.

We now deal with (ii). Consider the open annulus

$$U \coloneqq \left\{ x \in \mathbb{R}^2 \mid 1 < \|x\| < 3 \right\} \subseteq \mathbb{R}^2$$

and note that $F(t) \in U$ for every $t \in \mathbb{R}$. (Incidentally, the image of $F|_{[-4\pi, 4\pi]}$ has been plotted below.)

Thus, F may be viewed as an injective smooth immersion $F \colon \mathbb{R} \to U$. Since the inclusion map $\iota \colon U \hookrightarrow \mathbb{R}^2$ is a smooth embedding by *Example 4.4*(3), in view of *Exercise* 1(a)(iii) and *Proposition 4.6*(b), to prove (ii), it suffices to show that $F \colon \mathbb{R} \to U$ is a *proper* map;

in other words, given a compact subset K of U, we have to show that $F^{-1}(K)$ is a compact subset of \mathbb{R} , or equivalently that it is closed and bounded. Since $K \subseteq U$ is compact and $U \subseteq \mathbb{R}^2$ is Hausdorff, K is a closed subset of U, and since F is continuous, $F^{-1}(K)$ is a closed subset of \mathbb{R} . Now, denote by m (resp. M) the minimum (resp. the maximum) norm of the points of K, and observe that $[m, M] \subseteq (1, 3)$. Denote also by ℓ (resp. L) the preimage of m (resp. M) under the strictly increasing function

$$g \colon \mathbb{R} \to (1,3), t \mapsto ||F(t)|| = 2 + \tanh t$$

and note that $F^{-1}(K) \subseteq [\ell, L]$, which shows that $F^{-1}(K)$ is a bounded subset of \mathbb{R} . This finishes the proof of (ii).

Exercise 4 (Inverse function theorem for smooth manifolds): Let $F: M \to N$ be a smooth map. Show that if $p \in M$ is a point such that the differential dF_p of F at p is invertible, then there exist connected neighborhoods U_0 of p in M and V_0 of F(p) in N such that $F|_{U_0}: U_0 \to V_0$ is a diffeomorphism.

Solution: The idea is to pass to a coordinate representation of F and to use the *inverse* function theorem for open subsets of Euclidean spaces, which is recalled below.

Let $W \subseteq \mathbb{R}^n$ be open and consider a smooth function $G: W \to \mathbb{R}^n$. Suppose that there is a point $a \in W$ such that the Jacobian matrix of G at a is invertible. Then there exist connected open sets U and V such that $a \in U \subseteq W$ and $G(U) \subseteq V \subseteq \mathbb{R}^n$, and moreover the restriction $G|_U: U \to V$ admits a smooth inverse; that is, $G|_U$ is a diffeomorphism from U to V.

Let (U, φ) and (V, ψ) be charts for M and N around p and F(p), respectively, such that $F(U) \subseteq V$, and assume WLOG that $\varphi(p) = 0$ and $\psi(F(p)) = 0$. Set $\widehat{U} := \varphi(U)$ and $\widehat{V} := \psi(V)$, and let

$$\widehat{F} = \psi \circ F \circ \varphi^{-1} \colon \widehat{U} \to \widehat{V}$$

be the coordinate representation of F, which is smooth with $\widehat{F}(0) = 0$. Since dF_p is invertible, the tangent space to M at p and to N at F(p) must have the same dimension, and thus $\widehat{U}, \widehat{V} \subseteq \mathbb{R}^n$, where $n = \dim M = \dim N$. Observe now that the differential

$$d\widehat{F}_0 = d\psi_{F(p)} \circ dF_p \circ d(\varphi^{-1})_0$$

is invertible, because dF_p is invertible by assumption, and both $d(\varphi^{-1})_0$ and $d\psi_{F(p)}$ are invertible as well, as φ and ψ are diffeomorphisms. Note that the matrix representation of $d\hat{F}_0$ with respect to the standard coordinates of \mathbb{R}^n is the Jacobian of \hat{F} at 0. Therefore, by the *inverse function theorem* there are connected open neighborhoods $\hat{U}_0 \subseteq \hat{U}$ and $\hat{V}_0 \subseteq \hat{V}$ of 0 such that $\hat{F}|_{\hat{U}_0} : \hat{U}_0 \to \hat{V}_0$ is a diffeomorphism. Hence, for $U_0 \coloneqq \varphi^{-1}(\hat{U}_0) \ni p$ and $V_0 \coloneqq \psi^{-1}(\hat{V}_0) \ni F(p)$, the restriction $F|_{U_0} : U_0 \to V_0$ is a diffeomorphism, since we can write it as a composition of diffeomorphisms.

Remark. Exercise 4 has the following important corollary: a smooth map $F: M \to N$ is a local diffeomorphism if and only if dF_p is invertible for all $p \in M$. This also gives a very useful method to prove that some map is a diffeomorphism, without explicitly constructing a smooth inverse: a smooth bijective map $F: M \to N$ whose differential dF_p is invertible for all $p \in M$ is a diffeomorphism. **Exercise 5:** Let M and N be smooth manifolds and let $F: M \to N$ be a map. Prove the following assertions:

- (a) F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth submersion.
- (b) If $\dim M = \dim N$ and if F is either a smooth immersion or a smooth submersion, then it is a local diffeomorphism.

Solution: Recall that a local diffeomorphism is a smooth map by part (a) of [*Exercise* Sheet 3, *Exercise* 2].

(a) Assume first that F is a local diffeomorphism. According to part (d) of [*Exercise Sheet* 4, *Exercise* 1], for any $p \in M$, the differential of F at p is an \mathbb{R} -linear isomorphism, and thus both injective and surjective. Hence, F is both a smooth immersion and a smooth submersion.

Assume now that F is both a smooth immersion and a smooth submersion. Then for every $p \in M$, its differential dF_p is both injective and surjective, and thus an \mathbb{R} -linear isomorphism. It follows from *Exercise* 4 that F is a local diffeomorphism.

(b) Since dim $M = \dim N$, for any $p \in M$, the differential $dF_p: T_pM \to T_{F(p)}N$ is an \mathbb{R} -linear map between \mathbb{R} -vector spaces of the same dimension. Thus, dF_p is injective or surjective if and only if it an isomorphism. Therefore, F is a smooth immersion if and only if F is a smooth submersion, and hence (b) follows immediately from (a).

Exercise 6: Let M, N and P be smooth manifolds, and let $F: M \to N$ be a local diffeomorphism. Prove the following assertions:

- (a) If $G: P \to M$ is continuous, then G is smooth if and only if $F \circ G$ is smooth.
- (b) If F is surjective and if $H: N \to P$ is any map, then H is smooth if and only if $H \circ F$ is smooth.

Solution: Recall that a local diffeomorphism is a smooth map by part (a) of [*Exercise* Sheet 3, *Exercise* 2].

(a) If G is smooth, then $F \circ G$ is smooth by part (e) of [Exercise Sheet 3, Exercise 3]. Conversely, consider the smooth map $H \coloneqq F \circ G \colon P \to N$ and fix a point $p \in P$. Since F is a local diffeomorphism, there exists an open neighborhood V of G(p) such that F(V) is open in N and $F|_V \colon V \to F(V)$ is a diffeomorphism. Since G is continuous by assumption, $U \coloneqq G^{-1}(V)$ is an open subset of P, and since $G(p) \in V$, it holds that $p \in U$; in other words, U is an open neighborhood of p in P. Observe now that $G|_U = (F|_V)^{-1} \circ H|_U$ is smooth by part (e) of [Exercise Sheet 3, Exercise 3], since $(F|_V)^{-1}$ is smooth by assumption and $H|_U$ is smooth by part (b) of [Exercise Sheet 3, Exercise 2]. It follows from part (a) of [Exercise Sheet 3, Exercise 2] that G is smooth.

(b) If H is smooth, then $H \circ F$ is smooth by part (e) of [Exercise Sheet 3, Exercise 3]. Conversely, consider the smooth map $G \coloneqq H \circ F$ and fix a point $q \in N$. Since F is surjective, there exists a point $p \in M$ such that F(p) = q, and since F is a local diffeomorphism, there exists an open neighborhood U of p such that F(U) is open in N

and $F|_U: U \to F(U)$ is a diffeomorphism; in particular, F(U) is an open neighborhood of q in N. Observe now that $H|_{F(U)} = G|_U \circ (F|_U)^{-1}$ is smooth by part (e) of [Exercise Sheet 3, Exercise 3], since $(F|_U)^{-1}$ is smooth by assumption and $G|_U$ is smooth by part (b) of [Exercise Sheet 3, Exercise 2]. It follows from part (a) of [Exercise Sheet 3, Exercise 2] that H is smooth.