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Exercise Sheet 6 – Solutions

Exercise 1:

(a) Prove the following assertions:

(i) A composition of smooth submersions is a smooth submersion.

(ii) A composition of smooth immersions is a smooth immersion.

(iii) A composition of smooth embeddings is a smooth embedding.

(b) Show by means of a counterexample that a composition of smooth maps of constant
rank need not have constant rank.

Solution:

(a) First, we show (i). Let F : M → N and G : N → P be smooth submersions and fix
p ∈M . Then the composite map G ◦F : M → P is smooth by part (e) of [Exercise Sheet
3, Exercise 3], and by part (d) of [Exercise Sheet 4, Exercise 1] its differential at p is the
linear map

d(G ◦ F )p = dGF (p) ◦ dFp : TpM → T(G◦F )(p)P,

which is surjective, since both linear maps

dFp : TpM → TF (p)N and dGF (p) : TF (p) → T(G◦F )(p)

are surjective by assumption. Since p ∈ M was arbitrary, we conclude that G ◦ F is a
smooth submersion.

Next, to prove (ii), we argue exactly as in (i), except that the word “surjective” is
replaced by the word “injective”.

Finally, we show (iii). Let F : M → N and G : N → P be smooth embeddings.
By (ii) we know that the composite map G ◦ F : M → P is a smooth immersion, so it
remains to show that G ◦ F is a homeomorphism onto its image (G ◦ F )(M) ⊆ P in
the subspace topology. To this end, note that F is a homeomorphism onto its image
F (M) ⊆ N in the subspace topology, and that G is a homeomorphism onto its image
G(N) ⊆ P in the subspace topology, so the restriction G|F (M) : F (M) → G

(
F (M)

)
is

also a homeomorphism. Therefore, the composite map G ◦ F is a homeomorphism onto
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its image (G ◦ F )(M) ⊆ P in the subspace topology, as required. In conclusion, G ◦ F is
a smooth embedding.

(b) Consider the maps
γ : (0, 2π) → R2, t 7→ (cos t, sin t)

and
π : R2 → R, (x, y) 7→ y.

By Exercise 2(a), π is a surjective smooth submersion. Moreover, observe that

γ(t1) = γ(t2) =⇒ t1 = t2

and
∥γ′(t)∥ = ∥(− sin t, cos t)∥ = 1 for all t ∈ (0, 2π),

so γ is an injective smooth immersion; see Example 4.4 (1). Hence, both γ and π are
smooth maps of constant rank. However, the composite map

π ◦ γ : (0, 2π) → R, t 7→ sin t

does not have constant rank, because its derivative

(π ◦ γ)′ : (0, 2π) → R, t 7→ − cos t

vanishes for t = π
2
and t = 3π

2
.

Exercise 2:

(a) Let M1, . . . ,Mk be smooth manifolds, where k ≥ 2. Show that each of the projection
maps πi : M1 × . . .×Mk →Mi is a smooth submersion.

(b) Let M1, . . . ,Mk be smooth manifolds, where k ≥ 2. Choosing arbitrarily points
p1 ∈M1, . . . , pk ∈Mk, for each 1 ≤ j ≤ k consider the map

ιj : Mj →M1 × . . .×Mk, x 7→ (p1, . . . , pj−1, x, pj+1, . . . , pk).

Show that each ιj is a smooth embedding.

(c) Examine whether the following plane curves are smooth immersions:

(i) α : R → R2, t 7→ (t3, t2).

(ii) β : R → R2, t 7→ (t3 − 4t, t2 − 4).

If so, then examine also whether they are smooth embeddings.

(d) Show that the map

G : R2 → R3, (u, v) 7→
(
(2 + cos 2πu) cos 2πv, (2 + cos 2πu) sin 2πv, sin 2πu

)
is a smooth immersion.
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Solution:

(a) Fix i ∈ {1, . . . , k} and p = (p1, . . . , pk) ∈M1×. . .×Mk. By [Exercise Sheet 3, Exercise
4] we know that πi : M1 × . . . ×Mk → Mi is a smooth map, while by [Exercise Sheet 4,
Exercise 3] we know that

Tp
(
M1 × . . .×Mk

)
−→ Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk

v 7→
(
d(π1)p(v), . . . , d(πi)p(v), . . . , d(πk)p(v)

)
is an R-linear isomorphism. Using the above identification, we infer that the differential
of πi at p,

d(πi)p : Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk → TpiMi,

is surjective. Since p ∈ M1 × . . . ×Mk was arbitrary, we conclude that πi is a smooth
submersion.

(b) Fix j ∈ {1, . . . , k} and points p1 ∈ M1, . . . , pj−1 ∈ Mj−1, pj+1 ∈ Mj+1, . . . , pk ∈ Mk.
We have already seen in the solution of [Exercise Sheet 4, Exercise 3] that the map

ιj : Mj →M1 × . . .×Mk, x 7→ (p1, . . . , pj−1, x, pj+1, . . . , pk)

is smooth, and it is also clear that ιj is a homeomorphism onto its image

ιj(Mj) = {p1} × · · · × {pj−1} ×Mj × {pj+1} × · · · × {pk}.

Moreover, given a point pj ∈Mj, using the identification

Tp
(
M1 × . . .×Mk

) ∼= Tp1M1 ⊕ . . .⊕ TpiMi ⊕ . . .⊕ TpkMk,

where p := (p1, . . . , pj−1, pj, pj+1, . . . , pk) ∈ M1 × . . .Mk, we infer that the differential of
ιj at p,

d(ιj)pj : TpjMj → Tp1M1 ⊕ . . .⊕ TpjMj ⊕ . . .⊕ TpkMk,

is injective. In conclusion, ιj is a smooth embedding.

(c) We first deal with (i). The map α(t) = (t3, t2), t ∈ R, is clearly smooth, but it is not
an immersion, since α′(t) = (3t2, 2t) vanishes at the point t = 0. Thus, α cannot be an
embedding either.
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We now deal with (ii). The map β(t) = (t3 − 4t, t2 − 4), t ∈ R, is clearly smooth and
its velocity vector β′(t) = (3t2 − 4, 2t), t ∈ R, is nowhere vanishing, so β is an immersion,
see Example 4.4 (1). However, the image curve β(R) has a self-intersection for t = −2,
t = 2, and hence β cannot be an embedding.
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(d) The map G with component functions (G1, G2, G3) is clearly smooth with Jacobian
matrix

JG(u, v) =


∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)



=

−2π sin(2πu) cos(2πv) −2π
(
2 + cos(2πu)

)
sin(2πv)

−2π sin(2πu) sin(2πv) 2π
(
2 + cos(2πu)

)
cos(2πv)

2π cos(2πu) 0

 .

The 2× 2 submatrix(
∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

)
=

(
−2π sin(2πu) cos(2πv) −2π

(
2 + cos(2πu)

)
sin(2πv)

−2π sin(2πu) sin(2πv) 2π
(
2 + cos(2πu)

)
cos(2πv)

)

of JG has determinant

D12(u, v) := −4π2
(
2 + cos(2πu)

)
sin(2πu),

the 2× 2 submatrix(
∂G1

∂u
(u, v) ∂G1

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)

)
=

(
−2π sin(2πu) cos(2πv) −2π

(
2 + cos(2πu)

)
sin(2πv)

2π cos(2πu) 0

)

of JG has determinant

D13(u, v) := 4π2
(
2 + cos(2πu)

)
cos(2πu) sin(2πv),
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and the 2× 2 submatrix(
∂G2

∂u
(u, v) ∂G2

∂v
(u, v)

∂G3

∂u
(u, v) ∂G3

∂v
(u, v)

)
=

(
−2π sin(2πu) sin(2πv) 2π

(
2 + cos(2πu)

)
cos(2πv)

2π cos(2πu) 0

)
of JG has determinant

D23(u, v) := −4π2
(
2 + cos(2πu)

)
cos(2πu) cos(2πv).

Observe now that for each (u, v) ∈ R2, at least one of the determinantsD12(u, v), D13(u, v)
and D23(u, v) is non-zero, since cos(2πθ) and sin(2πθ) do not vanish simultaneously. This
implies that rk

(
JG(u, v)

)
= 2 for all (u, v) ∈ R2; see the solution to part (c) of [Exercise

Sheet 2, Exercise 3]. In conclusion, G is a smooth immersion, as claimed.

Exercise 3:

(a) Show that the inclusion map ι : Sn ↪→ Rn+1 is a smooth embedding.

(b) Consider the map

F : R → R2, t 7→ (2 + tanh t) · (cos t, sin t).

(i) Show that F is an injective smooth immersion.

(ii) Show that F is a smooth embedding.

[Hint: Show that F : R → U = {x ∈ R2 | 1 < ∥x∥ < 3} is a proper map.]

Solution:

(a) Consider the graph coordinates
(
U±
i ∩ Sn, φ±

i

)
for Sn; see Example 1.10 (2). We have

shown in Example 2.12 that the inclusion map ι : Sn ↪→ Rn+1 is smooth, because its
coordinate representation with respect to any of the graph coordinates is

ι̂(u1, . . . , un) =
(
u1, . . . , ui−1,±

√
1− ∥u∥2, ui, . . . , un

)
,

which is smooth on its domain, the unit ball Bn = {u = (u1, . . . , un) ∈ Rn | ∥u∥ < 1}.
The Jacobian matrix of the coordinate representation ι̂ = ι ◦ (φ±

i )
−1 of ι with respect to

the graph coordinates has the form

1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0

...
...

...
...

...
...

...

0 0 . . . 1 0 0 . . . 0 0

∓u1√
1−∥u∥2

∓u2√
1−∥u∥2

. . . ∓ui−1√
1−∥u∥2

∓ui√
1−∥u∥2

∓ui+1√
1−∥u∥2

. . . ∓un−1√
1−∥u∥2

∓un√
1−∥u∥2

0 0 . . . 0 0 1 . . . 0 0

...
...

...
...

...
...

...

0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 1



.
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In particular, we observe that each of these (n + 1) × n matrices (which represent the
differential of ι in coordinate bases) has rank n. Hence, ι is an injective smooth immersion.
Since Sn is compact, by Proposition 4.6 (c) we conclude that ι is a smooth embedding.

(b) We first deal with (i). Clearly, F is smooth. Recall also that the function

t ∈ R 7→ ∥F (t)∥ = 2 + tanh t

is strictly increasing, which implies that F is injective. Finally, to show that F is a smooth
immersion, it suffices to show that F ′(t) ̸= 0 for every t ∈ R. To this end, recall that

d

dt
tanh t =

1

cosh2 t
, t ∈ R,

so we have

F ′(t) =

(
−(2 + tanh t) sin t+

1

cosh2 t
cos t, (2 + tanh t) cos t+

1

cosh2 t
sin t

)
, t ∈ R,

and thus

∥F ′(t)∥2 = (2 + tanh t)2 +
1

cosh4 t
> 0 for all t ∈ R,

which implies that F ′(t) ̸= 0 for every t ∈ R, as desired.
We now deal with (ii). Consider the open annulus

U :=
{
x ∈ R2 | 1 < ∥x∥ < 3

}
⊆ R2

and note that F (t) ∈ U for every t ∈ R. (Incidentally, the image of F |[−4π,4π] has been
plotted below.)

Thus, F may be viewed as an injective smooth immersion F : R → U . Since the inclusion
map ι : U ↪→ R2 is a smooth embedding by Example 4.4 (3), in view of Exercise 1(a)(iii)
and Proposition 4.6 (b), to prove (ii), it suffices to show that F : R → U is a proper map;
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in other words, given a compact subsetK of U , we have to show that F−1(K) is a compact
subset of R, or equivalently that it is closed and bounded. Since K ⊆ U is compact and
U ⊆ R2 is Hausdorff, K is a closed subset of U , and since F is continuous, F−1(K) is
a closed subset of R. Now, denote by m (resp. M) the minimum (resp. the maximum)
norm of the points of K, and observe that [m,M ] ⊆ (1, 3). Denote also by ℓ (resp. L) the
preimage of m (resp. M) under the strictly increasing function

g : R → (1, 3), t 7→ ∥F (t)∥ = 2 + tanh t

and note that F−1(K) ⊆ [ℓ, L], which shows that F−1(K) is a bounded subset of R. This
finishes the proof of (ii).

Exercise 4 (Inverse function theorem for smooth manifolds): Let F : M → N be a
smooth map. Show that if p ∈ M is a point such that the differential dFp of F at p is
invertible, then there exist connected neighborhoods U0 of p in M and V0 of F (p) in N
such that F |U0 : U0 → V0 is a diffeomorphism.

Solution: The idea is to pass to a coordinate representation of F and to use the inverse
function theorem for open subsets of Euclidean spaces, which is recalled below.

Let W ⊆ Rn be open and consider a smooth function G : W → Rn. Suppose that there
is a point a ∈ W such that the Jacobian matrix of G at a is invertible. Then there exist
connected open sets U and V such that a ∈ U ⊆ W and G(U) ⊆ V ⊆ Rn, and moreover
the restriction G|U : U → V admits a smooth inverse; that is, G|U is a diffeomorphism
from U to V .

Let (U,φ) and (V, ψ) be charts for M and N around p and F (p), respectively, such

that F (U) ⊆ V , and assume WLOG that φ(p) = 0 and ψ
(
F (p)

)
= 0. Set Û := φ(U) and

V̂ := ψ(V ), and let

F̂ = ψ ◦ F ◦ φ−1 : Û → V̂

be the coordinate representation of F , which is smooth with F̂ (0) = 0. Since dFp is
invertible, the tangent space to M at p and to N at F (p) must have the same dimension,

and thus Û , V̂ ⊆ Rn, where n = dimM = dimN . Observe now that the differential

dF̂0 = dψF (p) ◦ dFp ◦ d(φ−1)0

is invertible, because dFp is invertible by assumption, and both d(φ−1)0 and dψF (p) are
invertible as well, as φ and ψ are diffeomorphisms. Note that the matrix representation of
dF̂0 with respect to the standard coordinates of Rn is the Jacobian of F̂ at 0. Therefore,
by the inverse function theorem there are connected open neighborhoods Û0 ⊆ Û and
V̂0 ⊆ V̂ of 0 such that F̂ |Û0

: Û0 → V̂0 is a diffeomorphism. Hence, for U0 := φ−1(Û0) ∋ p

and V0 := ψ−1(V̂0) ∋ F (p), the restriction F |U0 : U0 → V0 is a diffeomorphism, since we
can write it as a composition of diffeomorphisms.

Remark. Exercise 4 has the following important corollary: a smooth map F : M → N
is a local diffeomorphism if and only if dFp is invertible for all p ∈ M . This also gives
a very useful method to prove that some map is a diffeomorphism, without explicitly
constructing a smooth inverse: a smooth bijective map F : M → N whose differential dFp

is invertible for all p ∈M is a diffeomorphism.
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Exercise 5: Let M and N be smooth manifolds and let F : M → N be a map. Prove
the following assertions:

(a) F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth
submersion.

(b) If dimM = dimN and if F is either a smooth immersion or a smooth submersion,
then it is a local diffeomorphism.

Solution: Recall that a local diffeomorphism is a smooth map by part (a) of [Exercise
Sheet 3, Exercise 2].

(a) Assume first that F is a local diffeomorphism. According to part (d) of [Exercise Sheet
4, Exercise 1], for any p ∈ M , the differential of F at p is an R-linear isomorphism, and
thus both injective and surjective. Hence, F is both a smooth immersion and a smooth
submersion.

Assume now that F is both a smooth immersion and a smooth submersion. Then for
every p ∈ M , its differential dFp is both injective and surjective, and thus an R-linear
isomorphism. It follows from Exercise 4 that F is a local diffeomorphism.

(b) Since dimM = dimN , for any p ∈ M , the differential dFp : TpM → TF (p)N is an
R-linear map between R-vector spaces of the same dimension. Thus, dFp is injective or
surjective if and only if it an isomorphism. Therefore, F is a smooth immersion if and
only if F is a smooth submersion, and hence (b) follows immediately from (a).

Exercise 6: Let M , N and P be smooth manifolds, and let F : M → N be a local
diffeomorphism. Prove the following assertions:

(a) If G : P →M is continuous, then G is smooth if and only if F ◦G is smooth.

(b) If F is surjective and if H : N → P is any map, then H is smooth if and only if H ◦F
is smooth.

Solution: Recall that a local diffeomorphism is a smooth map by part (a) of [Exercise
Sheet 3, Exercise 2].

(a) If G is smooth, then F ◦ G is smooth by part (e) of [Exercise Sheet 3, Exercise 3].
Conversely, consider the smooth map H := F ◦ G : P → N and fix a point p ∈ P . Since
F is a local diffeomorphism, there exists an open neighborhood V of G(p) such that
F (V ) is open in N and F |V : V → F (V ) is a diffeomorphism. Since G is continuous
by assumption, U := G−1(V ) is an open subset of P , and since G(p) ∈ V , it holds
that p ∈ U ; in other words, U is an open neighborhood of p in P . Observe now that
G|U = (F |V )−1 ◦H|U is smooth by part (e) of [Exercise Sheet 3, Exercise 3], since (F |V )−1

is smooth by assumption and H|U is smooth by part (b) of [Exercise Sheet 3, Exercise 2].
It follows from part (a) of [Exercise Sheet 3, Exercise 2] that G is smooth.

(b) If H is smooth, then H ◦ F is smooth by part (e) of [Exercise Sheet 3, Exercise
3]. Conversely, consider the smooth map G := H ◦ F and fix a point q ∈ N . Since
F is surjective, there exists a point p ∈ M such that F (p) = q, and since F is a local
diffeomorphism, there exists an open neighborhood U of p such that F (U) is open in N
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and F |U : U → F (U) is a diffeomorphism; in particular, F (U) is an open neighborhood of
q in N . Observe now that H|F (U) = G|U ◦ (F |U)−1 is smooth by part (e) of [Exercise Sheet
3, Exercise 3], since (F |U)−1 is smooth by assumption and G|U is smooth by part (b) of
[Exercise Sheet 3, Exercise 2]. It follows from part (a) of [Exercise Sheet 3, Exercise 2]
that H is smooth.
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