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Differential Geometry II - Smooth Manifolds
Winter Term 2024 /2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 5 — Solutions

Exercise 1:

(a) Let (x,y) denote the standard coordinates on R?. Verify that (z,7) are smooth global
coordinates on R?, where

T=x and y=vy+2°
Let p be the point (1,0) € R? (in standard coordinates), and show that
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even though the coordinate functions x and x are identically equal.
(This shows that each coordinate vector 9/0z'|, depends on the entire coordinate
system, not just on the single coordinate function z*.)

(b) Polar coordinates on R*: Consider the map

®: W = (0,+00) x (—7,7) — R?
(r,0) — (rcos@, rsind).

(i) Show that ® is a diffeomorphism onto its image U = &(W).
(Therefore, @' can be considered as a smooth chart on R?, and it is common
to call its component functions the polar coordinates (r,6) on R?.)

(ii) Let p be a point in R? whose polar coordinate representation is (r,0) = (2, 7/2),
and let v € T,R? be the tangent vector whose polar coordinate representation is
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r p p
Compute the coordinate representation of v in terms of the standard coordinate
vectors
0 0 ‘
ox|, 9y|,



(c) Spherical coordinates on R3: Consider the map

U: W= (0,4+00) x (—m, @) x (0,7) = R
(r,0,0) — (rcosesind, rsinpsind, rcosf).

(i) Show that W is a diffeomorphism onto its image U = W ().

(Therefore, ¥~! can be considered as a smooth chart on R?, and it is common
to call its component functions the spherical coordinates (r,p,0) on R3.)

(ii) Express the coordinate vectors
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of this chart at some point p € U in terms of the standard coordinate vectors
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Solution:

(a) Consider the function
V: R* = R?, (z,y) — (2,y + 2%).
Observe that v is smooth and bijective with inverse function
RS R (T,y) — (7,0 -7,

which is also smooth. Hence, 1 is a global smooth coordinate chart on R?; in other words,
its components (7,7) are smooth global coordinates on R

We have P o
or _ 9%y _ 9.2
o) =1 and 2 (ay) =37
and hence 5 5 5 5
— =1-—=| +3- = 7é —=] .
Oz |, oz |, dyl,  oz|,

(b) We deal with (i) and (ii) separately.

(i) Geometrically, r € (0,+00) is the distance from the origin, and 6 € (—m,7) is
the angle from the positive z-axis. Observe now that the image of ® is the plane
without the non-positive z-axis, that is,

U=oW)=R*\ {(z,y) eR* |2 <0,y =0}

Indeed, if (z,y) € R?\ {0} is arbitrary, then for r = \/2z? + y2, the point 1(z,y)
is on the unit circle S' C R?. Hence, there exists a unique 6 € (—, 7] such that
L(x,y) = (cos(8), sin(d)), so that (z,y) = (rcos(d), rsin(d)). That is, there is a
bijection between (0,00) x (—, 7] and R?\ {0}, given by the same formula as ®.
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If we remove (0, 00) x {7} from the domain (to obtain (0,00) X (—m, 7)), then we
have to remove the set

{(rcos(w), rsin(w)) |r e (O,oo)} = {(:C,O) | z < O}

from the target. Thus, the image of ® is the set U described above, as claimed.
Now, since ®: W — U is bijective and smooth with Jacobian determinant

cos@ —rsind

det (D®(r,0)) = det <sin9 7 cos 0

) :r(00829+sin29) =1 #0,

by the inverse function theorem and Proposition 4.9(f) we conclude that it is a
diffeomorphism.

We have
0 T\ O CoymN O 0
EPZCOS<§>8—ZE +Sln<§>a—yp—a—yp
and
0 0 0

%p:—Qsin (g) %p—i-QCOS (g) 8_yp:_28_x

so v has the following coordinate representation in standard coordinates:
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(c) We deal with (i) and (ii) separately.

(i)

Geometrically, r € (0,+00) is the distance from the origin, ¢ € (—m,7) is the
angle from the z < 0 half of the (x,z)-plane, and 6§ € (0,7) is the angle from
the positive z-axis. Observe now that the image of ¥ is the 3-dimensional space
without the z-axis and the non-positive z-axis, that is,

U=W0(W)=R?\ ({(0,0,z) ER?|zeR}U{(2,0,0) €R3|x§0}>,

and also that U: W — U is bijective. Furthermore, W is clearly smooth with
Jacobian matrix

cospsin® —rsinpsinf rcospcosd
Jy = | sinpsinfd rcospsinf rsinpcosf
cosf 0 —rsinf
and Jacobian determinant
det Jg = —r%sin 6,

which does not vanish for any (r,6) € (0,+00) x (0,7). Hence, ¥ is a local
diffeomorphism by the inverse function theorem. Since it is also bijective, it is
actually a diffeomorphism, see Proposition 4.9(f).



(ii) Since
r= (2% 4 y* + 22)1/?

and
rsinf = (2% 4+ y*)Y2,
we have
o) _0z9) oyo)  0z0
87‘p 8r8xp 0r0yp 8r82p
:cosgpsin@%'p—l—singpsin@agp—l—cos@%p
= ! T—| + 2 +z2
(@422 o, y@yp oz(,)’
o _oso| ool 0:0
8g0p_8g08xp dpdy|, Opiz|,
= —rsin sin(92 + rcospsinf —
N 7 Oz |, 7 |,
= - g +x£
N y@xp |,
and
LI LI
89p 0983:]) 898yp 808zp
: 0 . .0
=rcospcosf —| +rsinpcosd —| —rsinf —
Oz |, |, |,
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Exercise 2: Consider the inclusion ¢: S? < R3, where both S? and R? are endowed with
the standard smooth structure. Let p = (p!, p?, p?) € S? with p* > 0. What is the image
of the differential di,: T,S* — T,R??

Solution: Observe that the given point p € S? is contained in the domain of the smooth
chart (U5, p3) for S?, where

Ui ={(z",2%,2°) e R’ | 2° > 0}

and

ei U NS* = B, (2,22 2%) — (2, 27)
with coordinate functions ' and ¢? (defined in the obvious manner). Recall also that
the inverse of 3 is the map

() B = U NS, () = (! o2, /T (@2 = (2)2)
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see FEzample 1.3(2) and Ezample 1.10(2). Therefore, the coordinate representation v of
1 §? — R? with respect to the charts (U, ¢35 ) and (R3, Idgs) is the function

T(u,u2) = (Idgs o Lo (wi) ™) (u!, u2) = <u1,u2, VI (i) = (u2)2> ,

and the coordinate representation p of p € S? is p = ¢(p) = (p', p?). Since the Jacobian
matrix of 7, given by

1 0

1,2y 0 1
J(u,u”) = ” ;
o \/1—(u1)2—(u2)2 o \/1—(u1)2—(u2)2

represents di,: T,S* — T,R? in the coordinate bases

B B 9 B 9
B I B < C T.R3
{(9(,01 J0g? p} =B5 and {8:61 ) 02%| ) 0 p} =
we deduce that
B B B » B
a [ =122 +o0. _
! (8901 ) art|, " aa?|, \ST— ()P + (PR e,
_ 0] _» 0
ort|,” pPord|
and
9 0 9 P 9
d, [ =] =022 +1. _ :
’ (W ) ort|, " 0a?|,  \JT—(p)E+ () 0%,
_ o] o
0x? » p3 0x3 ’

Thus, the image of di, is the R-vector space spanned by the above two vectors, which
can be identified with the vectors (1,0, —i—;) and (0, 1, —g—i), respectively, in R?. It is now
easy to check that this 2-dimensional R-vector space is the orthogonal complement of (p);
namely,

du, (T,8%) = (p)= = {v e R* | (v,p) = 0}.
Exercise 3 (The global differential):

(a) Let F': M — N be a smooth map. Show that its global differential dF': TM — T'N
(which is just the map whose restriction to each tangent space T,M C T'M is dF,) is
also a smooth map.

(b) Let F': M — N and G: N — P be smooth maps. Prove the following assertions:

(i) d(Go F)=dGodF: TM — TP.



(i) d(Ida;) = Idgar: TM — T M.

(iii) If F is a diffeomorphism, then dF': TM — TN is also a diffeomorphism, and it
holds that (dF)~" = d(F~1).

Solution:

(a) Using the local expression for dF), in coordinates,

) OFi 0
AF, (a_ ) = a0 P gy

oy’
we see that dF has the following coordinate representation in terms of natural coordinates
for TM and T'N:

F(p)

({ﬁvodFo@_l)(xl,...,x",vl,...,v”) = (@ZodF) <vi—i

- . COF' . 9F",
- (Fl(x),...,F”(x),W(x)v’,...,W(m)zﬂ) .

Since F'is smooth, and thus its coordinate representation F= 1o Fop!issmooth, the
above coordinate representation of dF' is smooth, and hence dF is smooth, as claimed.

(b) All assertions follow immediately from [Ezercise Sheet 4, Ezercise 1].

Exercise 4: Let M, ..., M) be smooth manifolds. Show that T'(M; x ... x M) is
diffeomorphic to T'(M;) x ... x T'(Mg).

Solution: For each 1 <1 < k, denote by
T . My X...XM]C—>MZ'

the projection onto the i-the factor. It is smooth by [Ezercise Sheet 3, Exercise 4], so its
global differential
d(ﬂ'i)Z T(Ml X ... X Mk) — TMZ

is also a smooth map by FEzercise 3(a). Again by [Ezercise Sheet 3, Ezercise 4] we thus
obtain a smooth map

a: T(My x ... x M) — TM; x ...x TM,

given by a = (d(m), . ,d(wk)). Note that if p = (p1,...,px) € My X ... X My, then
a restricted to the fiber T,(M; x ... x M) is just the map defined in [Ezercise Sheet 4,
FEzercise 3], so it is in particular an isomorphism. Therefore, « is bijective. It remains to
show that « is a diffeomorphism.

To this end, for every 1 < i < k, let (U, (z7');,) be a smooth chart for M;, and
denote by pr,: TM; — M; the projection. By construction of the tangent bundle,
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(pr; Ui, (2);,, (v]);,) is a smooth coordinate chart, where (v{');, are the coordinates

> of T,M;. This yields
P/ Ji

K3

J
i

of a point (p,v) € T'M; (with p € U;) in terms of the basis (632.

the chart
(P U X oo prg U, ()0, (030 (@) (624);3)
for T'(M;) x ... x T(My). On the other hand, if we denote by
pr: T(My X ... xX My) — My x ... x M
the projection, then this also yields the chart
(pr " (Ur X oo X U, ()i, (0])i5)

for T(M;y x ... x Mg). In terms of these charts, the map « is just given by
((ﬁ)ma (Uzz)lh) = ((x]ll )ju (U{i )j17 ceey (xizk )jk’ (Uik )]k) )

which is clearly a diffeomorphism. Hence, « is a local diffeomorphism, and since it is
bijective, it is actually a diffecomorphism, see Proposition 4.9(f).

Exercise 5:

(a) Let f: X — S be a map from a topological space X to a set S. Show that if X is
connected and if f is locally constant, i.e., for every x € X there exists a neighborhood
U of z in X such that f|y: U — S is constant, then f is constant.

[Hint: Show that f is continuous when S is endowed with the discrete topology.|

(b) Let M and N be smooth manifolds and let F': M — N be a smooth map. Assume
that M is connected. Show that dF),: T,M — Tr)N is the zero map for each p € M
if and only if F is constant.

[Hint: Use (a). You may also use (without proof) the fact that any topological
manifold is locally (path) connected.]

Solution:

(a) We endow S with the discrete topology, and we claim that f: X — S is continuous.
Since then the singletons in S are open, to prove the claim, it suffices to show that the
fibers of f are open subsets of X. Fix s € S and pick z € f~'(s). Since f is locally
constant, there exists an open neighborhood U of z in X such that f|y: U — S is
constant, so for every u € U we have f(u) = f(x) = s, and hence u € f~!(s). Therefore,
the open neighborhood U of x is contained in the fiber f~1(s), i.e., x € U C f~1(s). Since
x € f71(s) was arbitrary, f7!(s) is an open subset of X, and since s € S was arbitrary,
we conclude that f is continuous.

Since S is endowed with the discrete topology, every singleton in S is also closed, and
thus every fiber of f is also closed, since f is continuous. In other words, the fibers of f
are both closed and open subsets of X, which is a connected space by assumption, and
hence each one of them is either empty or the whole space X. It follows that f is constant.
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(b) Assume first that F' is constant and let p € M. For every f € C*°(N), the composite
map f o F: M — R is constant, and hence for every v € T,M we have dF,(v)(f) =
v(foF)=0by Lemma 3.5(a). In conclusion, dF), is the zero linear transformation for
every p € M.
Assume now that dF, is the zero map for each p € M. By assumption and by (a),
to prove that F' is constant, it suffices to show that F' is locally constant. Fix p € M.
Since F' is smooth, there are smooth charts (U, ) for M containing p and (V%) for
N containing F(p) such that F(U) C V and the composite map F = 1) o F o ¢! is
smooth. By shrinking U if necessary, we may assume that U is connected, and thus ¢(U)
is also connected. Now, for each ¢ € U we know that the differential dF is represented
in coordinate bases by the Jacobian matrix of F. Since dF, = O for every ¢ € U by
assumption, we infer that
OF7 . . _
o () =0 for every i, every j, and every §=¢(q) € ¢(U).

Therefore, F' is constant on (U). It follows that F = ¢ o F oy~ is constant on U. Since
p € M was arbitrary, we conclude that F'is locally constant, as desired.



