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Winter Term 2024/2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 5 – Solutions

Exercise 1:

(a) Let (x, y) denote the standard coordinates on R2. Verify that (x̃, ỹ) are smooth global
coordinates on R2, where

x̃ = x and ỹ = y + x3.

Let p be the point (1, 0) ∈ R2 (in standard coordinates), and show that

∂

∂x

∣∣∣∣
p

̸= ∂

∂x̃

∣∣∣∣
p

,

even though the coordinate functions x and x̃ are identically equal.

(This shows that each coordinate vector ∂/∂xi|p depends on the entire coordinate
system, not just on the single coordinate function xi.)

(b) Polar coordinates on R2: Consider the map

Φ: W := (0,+∞)× (−π, π) → R2

(r, θ) 7→ (r cos θ, r sin θ).

(i) Show that Φ is a diffeomorphism onto its image U := Φ(W ).

(Therefore, Φ−1 can be considered as a smooth chart on R2, and it is common
to call its component functions the polar coordinates (r, θ) on R2.)

(ii) Let p be a point in R2 whose polar coordinate representation is (r, θ) = (2, π/2),
and let v ∈ TpR2 be the tangent vector whose polar coordinate representation is

v = 3
∂

∂r

∣∣∣∣
p

− ∂

∂θ

∣∣∣∣
p

.

Compute the coordinate representation of v in terms of the standard coordinate
vectors

∂

∂x

∣∣∣∣
p

,
∂

∂y

∣∣∣∣
p

.
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(c) Spherical coordinates on R3: Consider the map

Ψ: W := (0,+∞)× (−π, π)× (0, π) → R3

(r, φ, θ) 7→ (r cosφ sin θ, r sinφ sin θ, r cos θ).

(i) Show that Ψ is a diffeomorphism onto its image U := Ψ(W ).

(Therefore, Ψ−1 can be considered as a smooth chart on R3, and it is common
to call its component functions the spherical coordinates (r, φ, θ) on R3.)

(ii) Express the coordinate vectors

∂

∂r

∣∣∣∣
p

,
∂

∂φ

∣∣∣∣
p

,
∂

∂θ

∣∣∣∣
p

of this chart at some point p ∈ U in terms of the standard coordinate vectors

∂

∂x

∣∣∣∣
p

,
∂

∂y

∣∣∣∣
p

,
∂

∂z

∣∣∣∣
p

.

Solution:

(a) Consider the function

ψ : R2 → R2, (x, y) 7→ (x, y + x3).

Observe that ψ is smooth and bijective with inverse function

ψ−1 : R2 → R2, (x̃, ỹ) 7→
(
x̃, ỹ − x̃3

)
,

which is also smooth. Hence, ψ is a global smooth coordinate chart on R2; in other words,
its components (x̃, ỹ) are smooth global coordinates on R2.

We have
∂x̃

∂x
(x, y) = 1 and

∂ỹ

∂x
(x, y) = 3x2,

and hence
∂

∂x

∣∣∣∣
p

= 1 · ∂
∂x̃

∣∣∣∣
p

+ 3 · ∂
∂ỹ

∣∣∣∣
p

̸= ∂

∂x̃

∣∣∣∣
p

.

(b) We deal with (i) and (ii) separately.

(i) Geometrically, r ∈ (0,+∞) is the distance from the origin, and θ ∈ (−π, π) is
the angle from the positive x-axis. Observe now that the image of Φ is the plane
without the non-positive x-axis, that is,

U = Φ(W ) = R2 \
{
(x, y) ∈ R2 | x ≤ 0, y = 0

}
.

Indeed, if (x, y) ∈ R2 \ {0} is arbitrary, then for r :=
√
x2 + y2, the point 1

r
(x, y)

is on the unit circle S1 ⊆ R2. Hence, there exists a unique θ ∈ (−π, π] such that
1
r
(x, y) =

(
cos(θ), sin(θ)

)
, so that (x, y) =

(
r cos(θ), r sin(θ)

)
. That is, there is a

bijection between (0,∞)× (−π, π] and R2 \ {0}, given by the same formula as Φ.
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If we remove (0,∞)×{π} from the domain (to obtain (0,∞)× (−π, π)), then we
have to remove the set{(

r cos(π), r sin(π)
)
| r ∈ (0,∞)

}
=
{
(x, 0) | x < 0

}
from the target. Thus, the image of Φ is the set U described above, as claimed.
Now, since Φ: W → U is bijective and smooth with Jacobian determinant

det
(
DΦ(r, θ)

)
= det

(
cos θ −r sin θ
sin θ r cos θ

)
= r
(
cos2 θ + sin2 θ

)
= r ̸= 0,

by the inverse function theorem and Proposition 4.9 (f) we conclude that it is a
diffeomorphism.

(ii) We have
∂

∂r

∣∣∣∣
p

= cos
(π
2

) ∂

∂x

∣∣∣∣
p

+ sin
(π
2

) ∂

∂y

∣∣∣∣
p

=
∂

∂y

∣∣∣∣
p

and
∂

∂θ

∣∣∣∣
p

= −2 sin
(π
2

) ∂

∂x

∣∣∣∣
p

+ 2 cos
(π
2

) ∂

∂y

∣∣∣∣
p

= −2
∂

∂x

∣∣∣∣
p

,

so v has the following coordinate representation in standard coordinates:

v = 2
∂

∂x

∣∣∣∣
p

+ 3
∂

∂y

∣∣∣∣
p

.

(c) We deal with (i) and (ii) separately.

(i) Geometrically, r ∈ (0,+∞) is the distance from the origin, φ ∈ (−π, π) is the
angle from the x < 0 half of the (x, z)-plane, and θ ∈ (0, π) is the angle from
the positive z-axis. Observe now that the image of Ψ is the 3-dimensional space
without the z-axis and the non-positive x-axis, that is,

U = Ψ(W ) = R3 \
({

(0, 0, z) ∈ R3 | z ∈ R
}
∪
{
(x, 0, 0) ∈ R3 | x ≤ 0

})
,

and also that Ψ: W → U is bijective. Furthermore, Ψ is clearly smooth with
Jacobian matrix

JΨ =

cosφ sin θ −r sinφ sin θ r cosφ cos θ

sinφ sin θ r cosφ sin θ r sinφ cos θ

cos θ 0 −r sin θ


and Jacobian determinant

det JΨ = −r2 sin θ,

which does not vanish for any (r, θ) ∈ (0,+∞) × (0, π). Hence, Ψ is a local
diffeomorphism by the inverse function theorem. Since it is also bijective, it is
actually a diffeomorphism, see Proposition 4.9 (f).

3



(ii) Since
r = (x2 + y2 + z2)1/2

and
r sin θ = (x2 + y2)1/2,

we have

∂

∂r

∣∣∣∣
p

=
∂x

∂r

∂

∂x

∣∣∣∣
p

+
∂y

∂r

∂

∂y

∣∣∣∣
p

+
∂z

∂r

∂

∂z

∣∣∣∣
p

= cosφ sin θ
∂

∂x

∣∣∣∣
p

+ sinφ sin θ
∂

∂y

∣∣∣∣
p

+ cos θ
∂

∂z

∣∣∣∣
p

=
1

(x2 + y2 + z2)1/2

(
x
∂

∂x

∣∣∣∣
p

+ y
∂

∂y

∣∣∣∣
p

+ z
∂

∂z

∣∣∣∣
p

)
,

∂

∂φ

∣∣∣∣
p

=
∂x

∂φ

∂

∂x

∣∣∣∣
p

+
∂y

∂φ

∂

∂y

∣∣∣∣
p

+
∂z

∂φ

∂

∂z

∣∣∣∣
p

= −r sinφ sin θ
∂

∂x

∣∣∣∣
p

+ r cosφ sin θ
∂

∂y

∣∣∣∣
p

= −y ∂

∂x

∣∣∣∣
p

+ x
∂

∂y

∣∣∣∣
p

,

and

∂

∂θ

∣∣∣∣
p

=
∂x

∂θ

∂

∂x

∣∣∣∣
p

+
∂y

∂θ

∂

∂y

∣∣∣∣
p

+
∂z

∂θ

∂

∂z

∣∣∣∣
p

= r cosφ cos θ
∂

∂x

∣∣∣∣
p

+ r sinφ cos θ
∂

∂y

∣∣∣∣
p

− r sin θ
∂

∂z

∣∣∣∣
p

=
xz

(x2 + y2)1/2
∂

∂x

∣∣∣∣
p

+
yz

(x2 + y2)1/2
∂

∂y

∣∣∣∣
p

− (x2 + y2)1/2
∂

∂z

∣∣∣∣
p

.

Exercise 2: Consider the inclusion ι : S2 ↪→ R3, where both S2 and R3 are endowed with
the standard smooth structure. Let p = (p1, p2, p3) ∈ S2 with p3 > 0. What is the image
of the differential dιp : TpS2 → TpR3?

Solution: Observe that the given point p ∈ S2 is contained in the domain of the smooth
chart (U+

3 , φ
+
3 ) for S2, where

U+
3 =

{
(x1, x2, x3) ∈ R3 | x3 > 0

}
and

φ+
3 : U

+
3 ∩ S2 → B2, (x1, x2, x3) 7→ (x1, x2)

with coordinate functions φ1 and φ2 (defined in the obvious manner). Recall also that
the inverse of φ+

3 is the map

(φ+
3 )

−1 : B2 → U+
3 ∩ S2, (u1, u2) 7→

(
u1, u2,

√
1− (u1)2 − (u2)2

)
,
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see Example 1.3 (2) and Example 1.10 (2). Therefore, the coordinate representation ι̂ of
ι : S2 ↪→ R3 with respect to the charts (U+

3 , φ
+
3 ) and (R3, IdR3) is the function

ι̂ (u1, u2) =
(
IdR3 ◦ ι ◦ (φ+

3 )
−1
)
(u1, u2) =

(
u1, u2,

√
1− (u1)2 − (u2)2

)
,

and the coordinate representation p̂ of p ∈ S2 is p̂ = φ(p) = (p1, p2). Since the Jacobian
matrix of ι̂, given by

J(u1, u2) =

 1 0
0 1

− u1√
1−(u1)2−(u2)2

− u2√
1−(u1)2−(u2)2

 ,

represents dιp : TpS2 → TpR3 in the coordinate bases{
∂

∂φ1

∣∣∣∣
p

,
∂

∂φ2

∣∣∣∣
p

}
⊆ TpS2 and

{
∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

,
∂

∂x3

∣∣∣∣
p

}
⊆ TpR3,

we deduce that

dιp

(
∂

∂φ1

∣∣∣∣
p

)
= 1 · ∂

∂x1

∣∣∣∣
p

+ 0 · ∂

∂x2

∣∣∣∣
p

− p1√
1− (p1)2 + (p2)2

· ∂

∂x3

∣∣∣∣
p

=
∂

∂x1

∣∣∣∣
p

− p1

p3
∂

∂x3

∣∣∣∣
p

and

dιp

(
∂

∂φ2

∣∣∣∣
p

)
= 0 · ∂

∂x1

∣∣∣∣
p

+ 1 · ∂

∂x2

∣∣∣∣
p

− p2√
1− (p1)2 + (p2)2

· ∂

∂x3

∣∣∣∣
p

=
∂

∂x2

∣∣∣∣
p

− p2

p3
∂

∂x3

∣∣∣∣
p

.

Thus, the image of dιp is the R-vector space spanned by the above two vectors, which

can be identified with the vectors (1, 0,−p1

p3
) and (0, 1,−p2

p3
), respectively, in R3. It is now

easy to check that this 2-dimensional R-vector space is the orthogonal complement of ⟨p⟩;
namely,

dιp
(
TpS2

)
= ⟨p⟩⊥ ∼=

{
v ∈ R3 | ⟨v, p⟩ = 0

}
.

Exercise 3 (The global differential):

(a) Let F : M → N be a smooth map. Show that its global differential dF : TM → TN
(which is just the map whose restriction to each tangent space TpM ⊆ TM is dFp) is
also a smooth map.

(b) Let F : M → N and G : N → P be smooth maps. Prove the following assertions:

(i) d(G ◦ F ) = dG ◦ dF : TM → TP .
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(ii) d(IdM) = IdTM : TM → TM .

(iii) If F is a diffeomorphism, then dF : TM → TN is also a diffeomorphism, and it
holds that (dF )−1 = d(F−1).

Solution:

(a) Using the local expression for dFp in coordinates,

dFp

(
∂

∂xi

∣∣∣∣
p

)
=
∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F (p)

,

we see that dF has the following coordinate representation in terms of natural coordinates
for TM and TN :

(
ψ̃ ◦ dF ◦ φ̃−1

)
(x1, . . . , xn, v1, . . . , vn) =

(
ψ̃ ◦ dF

)(
vi

∂

∂xi

∣∣∣∣
φ−1(x)

)

= ψ̃

(
vi
∂F̂ j

∂xi
∂

∂yj

∣∣∣∣
F◦φ−1(x)

)

=

(
F̂ 1(x), . . . , F̂ n(x),

∂F̂ 1

∂xi
(x)vi, . . . ,

∂F̂ n

∂xi
(x)vi

)
.

Since F is smooth, and thus its coordinate representation F̂ = ψ ◦F ◦φ−1 is smooth, the
above coordinate representation of dF is smooth, and hence dF is smooth, as claimed.

(b) All assertions follow immediately from [Exercise Sheet 4, Exercise 1].

Exercise 4: Let M1, . . . ,Mk be smooth manifolds. Show that T (M1 × . . . × Mk) is
diffeomorphic to T (M1)× . . .× T (Mk).

Solution: For each 1 ≤ i ≤ k, denote by

πi : M1 × . . .×Mk →Mi

the projection onto the i-the factor. It is smooth by [Exercise Sheet 3, Exercise 4], so its
global differential

d(πi) : T (M1 × . . .×Mk) → TMi

is also a smooth map by Exercise 3(a). Again by [Exercise Sheet 3, Exercise 4] we thus
obtain a smooth map

α : T (M1 × . . .×Mk) → TM1 × . . .× TMk

given by α =
(
d(π1), . . . , d(πk)

)
. Note that if p = (p1, . . . , pk) ∈ M1 × . . . ×Mk, then

α restricted to the fiber Tp(M1 × . . . ×Mk) is just the map defined in [Exercise Sheet 4,
Exercise 3], so it is in particular an isomorphism. Therefore, α is bijective. It remains to
show that α is a diffeomorphism.

To this end, for every 1 ≤ i ≤ k, let (Ui, (x
ji
i )ji) be a smooth chart for Mi, and

denote by pri : TMi → Mi the projection. By construction of the tangent bundle,

6



(
pr−1

i Ui, (x
ji
i )ji , (v

ji
i )ji

)
is a smooth coordinate chart, where (vjii )ji are the coordinates

of a point (p, v) ∈ TMi (with p ∈ Ui) in terms of the basis

(
∂

∂x
ji
i

∣∣∣∣
p

)
ji

of TpMi. This yields

the chart (
pr−1

1 U1 × . . .× pr−1
k Uk, ((x

j1
1 )j1 , (v

j1
1 )j1), . . . , ((x

jk
k )jk , (v

jk
k )jk)

)
for T (M1)× . . .× T (Mk). On the other hand, if we denote by

pr : T (M1 × . . .×Mk) →M1 × . . .×Mk

the projection, then this also yields the chart(
pr−1(U1 × . . .× Uk), (x

ji
i )iji , (v

ji
i )iji

)
for T (M1 × . . .×Mk). In terms of these charts, the map α is just given by(

(xjii )iji , (v
ji
i )iji

)
7→
(
(xj11 )j1 , (v

j1
1 )j1 , . . . , (x

jk
k )jk , (v

jk
k )jk

)
,

which is clearly a diffeomorphism. Hence, α is a local diffeomorphism, and since it is
bijective, it is actually a diffeomorphism, see Proposition 4.9 (f).

Exercise 5:

(a) Let f : X → S be a map from a topological space X to a set S. Show that if X is
connected and if f is locally constant, i.e., for every x ∈ X there exists a neighborhood
U of x in X such that f |U : U → S is constant, then f is constant.

[Hint: Show that f is continuous when S is endowed with the discrete topology.]

(b) Let M and N be smooth manifolds and let F : M → N be a smooth map. Assume
that M is connected. Show that dFp : TpM → TF (p)N is the zero map for each p ∈M
if and only if F is constant.

[Hint: Use (a). You may also use (without proof) the fact that any topological
manifold is locally (path) connected.]

Solution:

(a) We endow S with the discrete topology, and we claim that f : X → S is continuous.
Since then the singletons in S are open, to prove the claim, it suffices to show that the
fibers of f are open subsets of X. Fix s ∈ S and pick x ∈ f−1(s). Since f is locally
constant, there exists an open neighborhood U of x in X such that f |U : U → S is
constant, so for every u ∈ U we have f(u) = f(x) = s, and hence u ∈ f−1(s). Therefore,
the open neighborhood U of x is contained in the fiber f−1(s), i.e., x ∈ U ⊆ f−1(s). Since
x ∈ f−1(s) was arbitrary, f−1(s) is an open subset of X, and since s ∈ S was arbitrary,
we conclude that f is continuous.

Since S is endowed with the discrete topology, every singleton in S is also closed, and
thus every fiber of f is also closed, since f is continuous. In other words, the fibers of f
are both closed and open subsets of X, which is a connected space by assumption, and
hence each one of them is either empty or the whole space X. It follows that f is constant.
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(b) Assume first that F is constant and let p ∈M . For every f ∈ C∞(N), the composite
map f ◦ F : M → R is constant, and hence for every v ∈ TpM we have dFp(v)(f) =
v(f ◦ F ) = 0 by Lemma 3.5 (a). In conclusion, dFp is the zero linear transformation for
every p ∈M .

Assume now that dFp is the zero map for each p ∈ M . By assumption and by (a),
to prove that F is constant, it suffices to show that F is locally constant. Fix p ∈ M .
Since F is smooth, there are smooth charts (U,φ) for M containing p and (V, ψ) for

N containing F (p) such that F (U) ⊆ V and the composite map F̂ = ψ ◦ F ◦ φ−1 is
smooth. By shrinking U if necessary, we may assume that U is connected, and thus φ(U)
is also connected. Now, for each q ∈ U we know that the differential dFq is represented

in coordinate bases by the Jacobian matrix of F̂ . Since dFq = O for every q ∈ U by
assumption, we infer that

∂F̂ j

∂xi
(
q̂
)
= 0 for every i, every j, and every q̂ = φ(q) ∈ φ(U).

Therefore, F̂ is constant on φ(U). It follows that F = φ◦ F̂ ◦ψ−1 is constant on U . Since
p ∈M was arbitrary, we conclude that F is locally constant, as desired.
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