

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 5

Exercise 1:

(a) Let (x, y) denote the standard coordinates on \mathbb{R}^2 . Verify that (\tilde{x}, \tilde{y}) are smooth global coordinates on \mathbb{R}^2 , where

$$\widetilde{x} = x$$
 and $\widetilde{y} = y + x^3$.

Let p be the point $(1,0) \in \mathbb{R}^2$ (in standard coordinates), and show that

$$\left. \frac{\partial}{\partial x} \right|_p \neq \left. \frac{\partial}{\partial \widetilde{x}} \right|_p,$$

even though the coordinate functions x and \tilde{x} are identically equal.

(This shows that each coordinate vector $\partial/\partial x^i|_p$ depends on the entire coordinate system, not just on the single coordinate function x^i .)

(b) Polar coordinates on \mathbb{R}^2 : Consider the map

$$\Phi \colon W \coloneqq (0, +\infty) \times (-\pi, \pi) \to \mathbb{R}^2$$
$$(r, \theta) \mapsto (r \cos \theta, r \sin \theta).$$

- (i) Show that Φ is a diffeomorphism onto its image $U := \Phi(W)$. (Therefore, Φ^{-1} can be considered as a smooth chart on \mathbb{R}^2 , and it is common to call its component functions the *polar coordinates* (r, θ) on \mathbb{R}^2 .)
- (ii) Let p be a point in \mathbb{R}^2 whose polar coordinate representation is $(r, \theta) = (2, \pi/2)$, and let $v \in T_p \mathbb{R}^2$ be the tangent vector whose polar coordinate representation is

$$v = 3\frac{\partial}{\partial r}\bigg|_p - \frac{\partial}{\partial \theta}\bigg|_p$$

Compute the coordinate representation of v in terms of the standard coordinate vectors

$$\left. \frac{\partial}{\partial x} \right|_p, \left. \frac{\partial}{\partial y} \right|_p.$$

(c) Spherical coordinates on \mathbb{R}^3 : Consider the map

$$\Psi \colon W \coloneqq (0, +\infty) \times (0, 2\pi) \times (0, \pi) \to \mathbb{R}^3$$
$$(r, \varphi, \theta) \mapsto (r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta).$$

- (i) Show that Ψ is a diffeomorphism onto its image $U := \Psi(W)$. (Therefore, Ψ^{-1} can be considered as a smooth chart on \mathbb{R}^3 , and it is common to call its component functions the *spherical coordinates* (r, φ, θ) on \mathbb{R}^3 .)
- (ii) Express the coordinate vectors

$$\left. \frac{\partial}{\partial r} \right|_p, \left. \frac{\partial}{\partial \varphi} \right|_p, \left. \frac{\partial}{\partial \theta} \right|_p$$

of this chart at some point $p \in U$ in terms of the standard coordinate vectors

$$\left. \frac{\partial}{\partial x} \right|_p, \left. \frac{\partial}{\partial y} \right|_p, \left. \frac{\partial}{\partial z} \right|_p.$$

Exercise 2 (to be submitted by Thursday, 17.10.2024, 16:00): Consider the inclusion $\iota: \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$, where both \mathbb{S}^2 and \mathbb{R}^3 are endowed with the standard smooth structure. Let $p = (p^1, p^2, p^3) \in \mathbb{S}^2$ with $p^3 > 0$. What is the image of the differential $d\iota_p: T_p \mathbb{S}^2 \to T_p \mathbb{R}^3$?

Exercise 3 (*The global differential*):

- (a) Let $F: M \to N$ be a smooth map. Show that its global differential $dF: TM \to TN$ (which is just the map whose restriction to each tangent space $T_pM \subseteq TM$ is dF_p) is also a smooth map.
- (b) Let $F: M \to N$ and $G: N \to P$ be smooth maps. Prove the following assertions:
 - (i) $d(G \circ F) = dG \circ dF \colon TM \to TP$.
 - (ii) $d(\mathrm{Id}_M) = \mathrm{Id}_{TM} \colon TM \to TM.$
 - (iii) If F is a diffeomorphism, then $dF: TM \to TN$ is also a diffeomorphism, and it holds that $(dF)^{-1} = d(F^{-1})$.

Exercise 4:

Let M_1, \ldots, M_k be smooth manifolds, where $k \geq 2$. Show that $T(M_1 \times \ldots \times M_k)$ is diffeomorphic to $T(M_1) \times \ldots \times T(M_k)$.

Exercise 5:

(a) Let $f: X \to S$ be a map from a topological space X to a set S. Show that if X is connected and if f is *locally constant*, i.e., for every $x \in X$ there exists a neighborhood U of x in X such that $f|_U: U \to S$ is constant, then f is constant.

[Hint: Show that f is continuous when S is endowed with the discrete topology.]

(b) Let M and N be smooth manifolds and let $F: M \to N$ be a smooth map. Assume that M is connected. Show that $dF_p: T_pM \to T_{F(p)}N$ is the zero map for each $p \in M$ if and only if F is constant.

[Hint: Use (a). You may also use (without proof) the fact that any topological manifold is locally (path) connected.]