Partie I : Preuves par récurrence et par l'absurde.

Notations.

1. La factorielle de $n \in \mathbb{N}$ est le nombre

$$n! := \begin{cases} 1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n & \text{si } n \neq 0 \\ 1 & \text{si } n = 0. \end{cases}$$

2. Soient $n, k \in \mathbb{N}$ avec $k \leq n$. Le coefficient binômial de n et k est le nombre

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Exercice 1. a) Montrer *l'identité de Pascal*, c'est-à-dire, $\forall n \in \mathbb{N}^*$ et $\forall k$ tel que $1 \le k \le n$,

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

par un calcul direct.

b) Montrer, par récurrence et en utilisant le point précédent que, que $\forall n \in \mathbb{N}$ et $0 \le k \le n$,

$$\binom{n}{k}$$
 est un entier.

Exercice 2. a) Montrer la formule du binome de Newton, c'est à dire, pour tout $n \in \mathbb{N}$ et $a, b \in \mathbb{R}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

b) En déduire que, pour tout entier n, on a

$$2^n = \sum_{k=0}^n \binom{n}{k}.$$

Exercice 3.

Les propositions suivantes sont-elles vraies ou fausses?

- a) La somme de deux rationnels est rationnelle.
- b) La somme de deux irrationnels est irrationnelle.
- c) La somme d'un rationnel et d'un irrationnel est rationnelle.
- d) Le produit de deux rationnels est rationnel.
- e) Le produit de deux irrationnels est irrationnel.
- f) Le produit d'un rationnel et d'un irrationnel est rationnel.

Exercice 4.

Montrer que $\sqrt[3]{2} \notin \mathbb{Q}$ et $\sqrt{3} \notin \mathbb{Q}$.

Partie II: Intervalles, ouverts et fermés

Exercice 5.

Réécrire les ensemble suivants en utilisant la notation d'intervalles.

a) $A = \{x \in \mathbb{R} : x < 1\}.$

d) $A = \{x \in \mathbb{R} : -x < 3 \text{ et } x^2 \ge 4\}.$

b) $A = \{x \in \mathbb{R} : -x \le 1\}.$

c) $A = \{x \in \mathbb{R} : x^2 \ge 2\}.$

e) $A = \{x \in \mathbb{R} : -x^3 \ge 3\}.$

Rappel. Soit un sous-ensemble $A \subset \mathbb{R}$.

1. A est **ouvert** si pour tout $x \in A$, il existe $\epsilon > 0$ tel que $]x - \epsilon; x + \epsilon[\subset A]$.

2. A est **fermé** si son complémentaire $A^c := \mathbb{R} \setminus A$ est ouvert.

Exercice 6.

Soient $a, b \in \mathbb{R}$ tels que a < b. Montrer, à l'aide de la définition d'ensembles ouverts et fermés, les propositions suivantes.

a) a; b[est ouvert

c) [a;b] est fermé

b) $]-\infty;a[$ est ouvert

d) [a; b[n'est ni ouvert, ni fermé.

Partie III: Maximum, minimum, suprémum, infimum

Exercice 7.

Parmi les sous-ensembles $A \subset \mathbb{R}$ suivants, déterminer s'ils sont majorés, minorés ou bornés, calculer $\sup(A)$ et $\inf(A)$, ainsi que $\max(A)$ et $\min(A)$ (s'ils existent).

a) $A =]-1, \sqrt{2}].$

e) $A = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}.$

b) $A =]\sqrt{3}, \infty[.$

c) $A = \left\{ \frac{1}{n} : n \in \mathbb{N}^* \right\}.$

f) $A = \mathbb{Q}$.

d) $A = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{N}^* \right\}.$

g) $A = [-\sqrt{2}, \sqrt{2}] \cap \mathbb{Q}$.

Exercice 8.

Soit $A \subset R$ non-vide. Les propositions suivantes sont-elles vraies ou fausses?

a) Si $\sup(A) \in A$ et $\inf(A) \in A$, alors A est un intervalle fermé.

b) Si A est un intervalle fermé et borné, alors $\sup(A) \in A$ et $\inf(A) \in A$.

c) Si $\sup(A) \in A$ et $\inf(A) \notin A$, alors A est un intervalle semi-ouvert (ouvert d'un côté, fermé de l'autre).

d) Si $\sup(A) = \inf(A)$, alors A est un singleton.

e) Si A est minoré, alors $\inf(A) \notin A$.

f) Si A est majoré, alors max(A) existe.