
Homework 3 - Solution
Introduction to quantum information processing

Exercise 1 Orthonormal basis and measurement principle

1) It involves the following checking:

⟨α|α⟩ =
(
cosα ⟨x|+ sinα ⟨y|

)(
cosα |x⟩+ sinα |y⟩

)
= cos2 α + sin2 α = 1

⟨α⊥|α⊥⟩ =
(
− sinα ⟨x|+ cosα ⟨y|

)(
− sinα |x⟩+ cosα |y⟩

)
= cos2 α + sin2 α = 1

⟨α⊥|α⟩ =
(
− sinα ⟨x|+ cosα ⟨y|

)(
cosα |x⟩+ sinα |y⟩

)
= − sinα cosα + cosα sinα = 0

⟨R|R⟩ = 1

2

(
⟨x| − i ⟨y|

)(
|x⟩+ i |y⟩

)
=

1

2
(12 + (−i)i) = 1

⟨L|L⟩ = 1

2

(
⟨x|+ i ⟨y|

)(
|x⟩ − i |y⟩

)
=

1

2
(12 + i(−i)) = 1

⟨R|L⟩ = 1

2

(
⟨x| − i ⟨y|

)(
|x⟩ − i |y⟩

)
=

1

2
(12 + (−i)(−i)) = 0

2) For each experiment, the possible states just after the measurement would be the corre-
sponding measurement basis with the following probabilities:

Prob(|x⟩) = |⟨x|ψ⟩|2 = cos2 θ

Prob(|y⟩) = |⟨y|ψ⟩|2 = |(sin θ)eiφ|2 = sin2 θ

where we use eiφ = cosφ + i sinφ so that |eiφ|2 = cos2 φ + sin2 φ = 1. For the other
probabilities we have:

Prob(|R⟩) = |⟨R|ψ⟩|2

=

∣∣∣∣ 1√
2
(⟨x| − i ⟨y|)

(
cos θ |x⟩+ (sin θ)eiφ |y⟩

)∣∣∣∣2
=

∣∣∣∣ 1√
2
cos θ − 1√

2
i sin θeiφ

∣∣∣∣2
=

∣∣∣∣ 1√
2
cos θ +

1√
2
sin θ sinφ− 1√

2
i sin θ cosφ

∣∣∣∣2
=

(
1√
2
cos θ +

1√
2
sin θ sinφ

)2

+

(
1√
2
sin θ cosφ

)2

=
1

2
+ cos θ sin θ sinφ
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Prob(|L⟩) = |⟨L|ψ⟩|2

=

∣∣∣∣ 1√
2
(⟨x|+ i ⟨y|)

(
cos θ |x⟩+ (sin θ)eiφ |y⟩

)∣∣∣∣2
=

∣∣∣∣ 1√
2
cos θ +

1√
2
i sin θeiφ

∣∣∣∣2
=

∣∣∣∣ 1√
2
cos θ − 1√

2
sin θ sinφ+

1√
2
i sin θ cosφ

∣∣∣∣2
=

(
1√
2
cos θ − 1√

2
sin θ sinφ

)2

+

(
1√
2
sin θ cosφ

)2

=
1

2
− cos θ sin θ sinφ

Prob(|α⟩) = |⟨α|ψ⟩|2

=
∣∣(cosα ⟨x|+ sinα ⟨y|)

(
cos θ |x⟩+ (sin θ)eiφ |y⟩

)∣∣2
=

∣∣cosα cos θ + sinα sin θeiφ
∣∣2

= |cosα cos θ + sinα sin θ cosφ+ i sinα sin θ sinφ|2

= (cosα cos θ + sinα sin θ cosφ)2 + (sinα sin θ sinφ)2

= cos2 α cos2 θ + 2 cosα sinα cos θ sin θ cosφ+ sin2 α sin2 θ

Prob(|α⊥⟩) = |⟨α⊥|ψ⟩|2

=
∣∣(sinα ⟨x|+ cosα ⟨y|)

(
cos θ |x⟩+ (sin θ)eiφ |y⟩

)∣∣2
=

∣∣− sinα cos θ + cosα sin θeiφ
∣∣2

= |− sinα cos θ + cosα sin θ cosφ+ i cosα sin θ sinφ|2

= (sinα cos θ − cosα sin θ cosφ)2 + (cosα sin θ sinφ)2

= sin2 α cos2 θ − 2 cosα sinα cos θ sin θ cosφ+ cos2 α sin2 θ

One can verify that these probabilities are normalized to one,

Prob(|x⟩) + Prob(|y⟩) = Prob(|R⟩) + Prob(|L⟩) = Prob(|α⟩) + Prob(|α⊥⟩) = 1.

Exercise 2 Polarization observable and measurement principle

1) In Homework 3, we have checked that ⟨α|α⟩ = ⟨α⊥|α⊥⟩ = 1 and ⟨α|α⊥⟩ = ⟨α⊥|α⟩ = 0.
Therefore, we have

Π2
α = |α⟩ ⟨α|α⟩ ⟨α| = |α⟩ ⟨α| = Πα

Π2
α⊥

= |α⊥⟩ ⟨α⊥|α⊥⟩ ⟨α⊥| = |α⊥⟩ ⟨α⊥| = Πα⊥

ΠαΠα⊥ = |α⟩ ⟨α|α⊥⟩ ⟨α⊥| = 0

Πα⊥Πα = |α⊥⟩ ⟨α⊥|α⟩ ⟨α| = 0
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2)

| ⟨θ|α⟩ |2 = ⟨θ|α⟩ ⟨θ|α⟩∗ = ⟨θ|α⟩ ⟨α|θ⟩ = ⟨θ|Πα |θ⟩ ,
| ⟨θ|α⊥⟩ |2 = ⟨θ|α⊥⟩ ⟨θ|α⊥⟩∗ = ⟨θ|α⊥⟩ ⟨α⊥|θ⟩ = ⟨θ|Πα⊥ |θ⟩

3) The probabilities are

Prob(p = +1) = | ⟨α|θ⟩ |2 = | cosα cos θ + sinα sin θ|2 = (cos(θ − α))2

Prob(p = −1) = | ⟨α⊥|θ⟩ |2 = | − sinα cos θ + cosα sin θ|2 = (sin(θ − α))2

and they sum to 1,

Prob(p = +1) + Prob(p = −1) = (cos(θ − α))2 + (sin(θ − α))2 = 1

4) The expectation is

E[p] = (+1)Prob(p = +1) + (−1)Prob(p = −1)

= (cos(θ − α))2 − (sin(θ − α))2

= cos
(
2(θ − α)

)
and the variance is

Var(p) = E[p2]− (E[p])2

= 1− (E[p])2

= (cos(θ − α))2 − (sin(θ − α))2

= 1−
(
cos(2(θ − α))

)2
=

(
sin(2(θ − α))

)2
In fact they should match with the computation in Dirac notation because

⟨θ|Pα |θ⟩ = ⟨θ|
(
(+1)Πα + (−1)Πα⊥

)
|θ⟩

= (+1) ⟨θ|Πα |θ⟩+ (−1) ⟨θ|Πα⊥ |θ⟩
= (+1)Prob(p = +1) + (−1)Prob(p = −1)

= E[p]

and

⟨θ|P 2
α |θ⟩ = ⟨θ|

(
(+1)Πα + (−1)Πα⊥

)2 |θ⟩
= ⟨θ|

(
Π2

α − ΠαΠα⊥ − Πα⊥Πα +Π2
α⊥

)
|θ⟩

= ⟨θ|
(
Πα +Πα⊥

)
|θ⟩

= (+1)2 ⟨θ|Πα |θ⟩+ (−1)2 ⟨θ|Πα⊥ |θ⟩
= (+1)2Prob(p = +1) + (−1)2Prob(p = −1)

= E[p2]

thereby giving E[p] = ⟨θ|Pα |θ⟩ and Var(p) = E[p2]− (E[p])2 = ⟨θ|P 2
α |θ⟩ − ⟨θ|Pα |θ⟩2.
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Exercise 3 Interferometer with an atom on one path

1) The matrices in Dirac notation are

S =
1√
2
|H⟩ ⟨H|+ 1√

2
|H⟩ ⟨V |+ 1√

2
|V ⟩ ⟨H| − 1√

2
|V ⟩ ⟨V |+ |abs⟩ ⟨abs|

R = |H⟩ ⟨V |+ |V ⟩ ⟨H|+ |abs⟩ ⟨abs| .

To find U = SARS we proceed by steps:

RS =
1√
2
|H⟩ ⟨H| − 1√

2
|H⟩ ⟨V |+ 1√

2
|V ⟩ ⟨H|+ 1√

2
|V ⟩ ⟨V |+ |abs⟩ ⟨abs| ,

ARS = |H⟩ ⟨abs|+ 1√
2
|V ⟩ ⟨H|+ 1√

2
|V ⟩ ⟨V |+ 1√

2
|abs⟩ ⟨H| − 1√

2
|abs⟩ ⟨V |

and finally

U = SARS =
1

2
|H⟩ ⟨H|+ 1

2
|H⟩ ⟨V |+ 1√

2
|H⟩ ⟨abs|

− 1

2
|V ⟩ ⟨H| − 1

2
|V ⟩ ⟨V |+ 1√

2
|V ⟩ ⟨abs|

+
1√
2
|abs⟩ ⟨H| − 1√

2
|abs⟩ ⟨V | .

2) As SARS |H⟩ = 1
2
|H⟩ − 1

2
|V ⟩+ 1√

2
|abs⟩, the probabilities of the three events are

Prob(D1) = | ⟨V |SARS |H⟩ |2 = 1

4
,

Prob(D2) = | ⟨H|SARS |H⟩ |2 = 1

4
,

Prob(abs) = | ⟨abs|SARS |H⟩ |2 = 1

2
,

which sum to 1. Importantly, we see that the ”interference effects” at the detectors have
disappeared since we have equal probability of detection in the two detectors. This is due
to the presence of the atom on one of the possible paths.

3) A legitimate matrix has to be unitary. The first matrix0 0 1
0 0 0
1 0 0


is not unitary because 0 0 1

0 0 0
1 0 0

0 0 1
0 0 0
1 0 0

 =

1 0 0
0 0 0
0 0 1

 ̸= I.
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The second matrix  1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2


is unitary because 1√

2
0 1√

2

0 1 0
1√
2

0 − 1√
2

 1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

 =

1 0 0
0 1 0
0 0 1

 = I.

Thus the second matrix may model the absorption and reemission of the photon. Note
also that this matrix acts like a Hadamard matrix on the subspace {|H⟩ , |abs⟩}.

Exercise 4 No-cloning theorem

Proof using unitarity of U
We have

U |Ψ1⟩ ⊗ |blank⟩ = |Ψ1⟩ ⊗ |Ψ1⟩, U |Ψ2⟩ ⊗ |blank⟩ = |Ψ2⟩ ⊗ |Ψ2⟩
Taking the Dirac conjugate of the second equation

⟨Ψ2| ⊗ ⟨blank|U † = |Ψ2⟩ ⊗ |Ψ2⟩
Now we make the inner product between the two equations, or other words form the Dirac
bracket:

⟨Ψ2| ⊗ ⟨blank|U †U |Ψ1⟩ ⊗ |blank⟩ = |Ψ1⟩ ⊗ |Ψ1⟩|Ψ2⟩ ⊗ |Ψ2⟩
Using U †U = I and the rules of the inner product in the tensor product space we get

⟨Ψ2|Ψ1⟩⟨blank|blank⟩ = (⟨Ψ2|Ψ1⟩)2

Thus
⟨Ψ2|Ψ1⟩(1− ⟨Ψ2|Ψ1⟩) = 0

This can only be true if |Ψ⟩1 = |Ψ2⟩ or |Ψ1⟩ ⊥ |Ψ1⟩.

Proof using linearity of U
For |Ψ⟩ = |0⟩, the machine should give U |0⟩ ⊗ |blank⟩ = |0⟩ ⊗ |0⟩. For |Ψ⟩ = |1⟩, the

machine should give U |1⟩ ⊗ |blank⟩ = |1⟩ ⊗ |1⟩. The first claim follows by linearity,
U (α |0⟩+ β |1⟩)⊗ |blank⟩ = αU |0⟩ ⊗ |blank⟩+ βU |1⟩ ⊗ |blank⟩

= α |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ .
The second claim is based on applying directly the definition to |Ψ⟩,

U (α |0⟩+ β |1⟩)⊗ |blank⟩ = (α |0⟩+ β |1⟩)⊗ (α |0⟩+ β |1⟩)
= α2 |0⟩ ⊗ |0⟩+ αβ |0⟩ ⊗ |1⟩+ αβ |1⟩ ⊗ |0⟩+ β2 |1⟩ ⊗ |1⟩ .

The two equations are equivalent when (α, β) = (0, 1) or (α, β) = (1, 0), which corresponds
to two orthogonal input states |Ψ⟩ = |0⟩ and |1⟩. This means that it is possible to copy two
orthogonal states with an appropriate machine U but no cloning is possible when the set of
input states is not orthogonal.
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