

Differential Geometry II - Smooth Manifolds Winter Term 2024/2025 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 4 – Solutions

Exercise 1: Let M, N and P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$. Prove the following assertions:

- (a) The map $dF_p: T_pM \to T_{F(p)}N$ is R-linear.
- (b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p : T_pM \to T_{(G \circ F)(p)}P$.
- (c) $d(\mathrm{Id}_M)_p = \mathrm{Id}_{T_pM} : T_pM \to T_pM$.
- (d) If F is a diffeomorphism, then $dF_p: T_pM \to T_{F(p)}N$ is an isomorphism, and it holds that $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Solution:

(a) Let $v, w \in T_pM$ and $\lambda, \mu \in \mathbb{R}$. For any $f \in C^{\infty}(N)$, we have

$$
dF_p(\lambda v + \mu w)(f) = (\lambda v + \mu w)(f \circ F)
$$

= $\lambda v(f \circ F) + \mu w(f \circ F)$
= $\lambda dF_p(v)(f) + \mu dF_p(w)(f)$
= $(\lambda dF_p(v) + \mu dF_p(w))(f),$

which implies

$$
dF_p(\lambda v + \mu w) = \lambda dF_p(v) + \mu dF_p(w).
$$

(b) For any $v \in T_pM$ and any $f \in C^{\infty}(P)$, we have

$$
d(G \circ F)_p(v)(f) = v(f \circ (G \circ F)) = v((f \circ G) \circ F)
$$

= $dF_p(v)(f \circ G)$
= $dG_{F(p)}(dF_p(v))(f)$
= $(dG_{F(p)} \circ dF_p)(v)(f),$

and thus

$$
d(G \circ F)_p(v) = \big(dG_{F(p)} \circ dF_p\big)(v),
$$

which yields the assertion.

(c) For any $v \in T_pM$ and any $f \in C^{\infty}(M)$, we have

$$
d(\mathrm{Id}_M)_p(v)(f) = v(f \circ \mathrm{Id}_M) = v(f),
$$

and hence

$$
d(\mathrm{Id}_M)_p(v) = v = \mathrm{Id}_{T_pM}(v),
$$

which proves the claim.

(d) Since F is a diffeomorphism, we have

$$
F \circ F^{-1} = \text{Id}_N \quad \text{and} \quad F^{-1} \circ F = \text{Id}_M,
$$

so by (b) and (c) we obtain

$$
\mathrm{Id}_{T_pM} = d(\mathrm{Id}_M)_p = d\left(F^{-1} \circ F\right)_p = d\left(F^{-1}\right)_{F(p)} \circ dF_p
$$

and

$$
Id_{T_{F(p)}N} = d(Id_N)_{F(p)} = d(F \circ F^{-1})_{F(p)} = dF_p \circ d(F^{-1})_{F(p)}.
$$

Hence, dF_p is an R-linear isomorphism with inverse

$$
(dF_p)^{-1} = d(F^{-1})_{F(p)}.
$$

Remark. For those familiar with categorical language, let us put Exercise 1 into context. Let $\mathbf{Man}_{*}^{\infty}$ be the category of pointed smooth manifolds, i.e., the category whose objects are pairs (M, p) , where M is a smooth manifold and $p \in M$, and whose morphisms $F: (M, p) \to (N, q)$ are smooth maps $F: M \to N$ with $F(p) = q$. Denote by $\text{Vect}_{\mathbb{R}}$ the category of R-vector spaces. Parts (a), (b) and (c) of the above exercise show that the assignment $T: \text{Man}_{*}^{\infty} \to \text{Vect}_{\mathbb{R}}$, which to a pointed smooth manifold (M, p) assigns the tangent space $T(M, p) = T_pM$ and which to a smooth map $F: (M, p) \to (N, q)$ assigns the differential $T(F) = dF_p$ of F at p, is a covariant functor. It is a general fact that functors send isomorphisms to isomorphisms, and that $T(F^{-1}) = T(F)^{-1}$, which is why part (d) of Exercise 1 is a formal consequence of the previous parts.

Exercise 2 (The tangent space to a vector space): Let V be a finite-dimensional R-vector space with its standard smooth manifold structure, see [Exercise Sheet 2, Exercise 2]. Fix a point $a \in V$.

(a) For each $v \in V$ define a map

$$
D_v|_a \colon C^{\infty}(V) \longrightarrow \mathbb{R}, \ f \mapsto \frac{d}{dt}\bigg|_{t=0} f(a+tv).
$$

Show that $D_v\big|_a$ is a derivation at a.

(b) Show that the map

$$
V \to T_a V, \ v \mapsto D_v \big|_a
$$

is a canonical isomorphism, such that for any linear map $L: V \to W$ the following diagram commutes:

Solution:

(a) Choose a basis E_1, \ldots, E_n of V and let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . Let $\varphi: \mathbb{R}^n \to V$ be the induced isomorphism, which is a diffeomorphism by definition of the standard smooth structure and by *Example 2.14*(2). Let $\vec{a} \coloneqq \varphi^{-1}(a)$ and $\vec{v} \coloneqq \varphi^{-1}(v)$. By Exercise 1(d) the differential $d\varphi_{\vec{a}}\colon T_{\vec{a}}\mathbb{R}^n \to T_aV$ is an R-linear isomorphism.

As shown in the lecture, the map

$$
\widehat{D}_{\vec{v}}|_{\vec{a}}: C^{\infty}(\mathbb{R}^n) \longrightarrow \mathbb{R}, f \mapsto \frac{d}{dt}\bigg|_{t=0} f(\vec{a} + t\vec{v})
$$

is a derivation of $C^{\infty}(\mathbb{R}^n)$ at \vec{a} . Let us now prove that $d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}}) = D_v|_a$ as functions from $C^{\infty}(V)$ to \mathbb{R} , thereby proving that $D_v|_a$ is a derivation of $C^{\infty}(V)$ at a, as $d\varphi_{\vec{a}}(\widehat{D}_v|_{\vec{a}})$ is so. To this end, let $f \in C^{\infty}(V)$. Then

$$
d\varphi_{\vec{a}}(\widehat{D}_{\vec{v}}|_{\vec{a}})(f) = \widehat{D}_{\vec{v}}|_{\vec{a}}(f \circ \varphi) = \frac{d}{dt}\bigg|_{t=0} (f \circ \varphi)(\vec{a} + t\vec{v}) = \frac{d}{dt}\bigg|_{t=0} f(a + tv) = D_{v}|_{a}(f).
$$

As f was arbitrary, we conclude that $d\varphi_{\vec{a}}\left(\widehat{D}_{\vec{v}}|_{\vec{a}}\right) = D_v|_a$, which yields the assertion.

(b) Denote by $\eta_{(V,a)}$ the map $V \to T_a V$, $v \mapsto D_v|_a$. In part (a) we proved that

$$
d\varphi_{\vec{a}} \circ \eta_{(\mathbb{R}^n, \vec{a})}(\vec{v}) = \eta_{(V, \varphi(\vec{a}))} \circ \varphi(\vec{v})
$$

for all $\vec{a}, \vec{v} \in \mathbb{R}^n$. In other words, we have $d\varphi_{\vec{a}} \circ \eta_{(\mathbb{R}^n, \vec{a})} = \eta_{(V, \varphi(\vec{a}))} \circ \varphi$. In particular, since in Proposition 3.3(b) we already saw that $\eta_{(\mathbb{R}^n, \vec{a})}$ is an isomorphism, and as $d\varphi_{\vec{a}}$ and φ are isomorphisms as well, we conclude that $\eta_{(V,\varphi(\vec{a}))}$ is an isomorphism.

It remains to check the above diagram commutes. Firstly, since L is linear, it is in particular smooth (all first order partial derivatives with respect to some basis exist and are constant, and all higher order partial derivatives vanish). Now, let $v \in V$ and $f \in C^{\infty}(W)$ be arbitrary. We have

$$
\begin{aligned} \left(dL_a \circ \eta_{(V,a)}(v)\right)(f) &= dL_a \left(D_v\big|_a\right)(f) = D_v\big|_a (f \circ L) \\ &= \frac{d}{dt}\big|_{t=0} f\big(L(a+tv)\big) = \frac{d}{dt}\big|_{t=0} f(La + tLv) = D_{Lv}\big|_{La}(f) \\ &= \eta_{(W,La)}(Lv)(f) = \big(\eta_{(W,La)} \circ L(v)\big)(f). \end{aligned}
$$

As v and f were arbitrary, we conclude that

$$
dL_a \circ \eta_{(V,a)} = \eta_{(W,L_a)} \circ L;
$$

in other words, the diagram in part (b) is commutative.

Remark. It is important to understand that each isomorphism $V \cong T_a V$ is canonically defined, independently of any choice of basis (notwithstanding the fact that we used a choice of basis to prove that it is an isomorphism). Because of this result, we can routinely identify tangent vectors to a finite-dimensional vector space with elements of the space itself.

More generally, if M is an open submanifold of an \mathbb{R} -vector space V, we can combine our identifications $T_nM \leftrightarrow T_nV \leftrightarrow V$ to obtain a canonical identification of each tangent space to M with V. For example, since $GL(n, \mathbb{R})$ is an open submanifold of the R-vector space $M(n, \mathbb{R})$, see [*Exercise Sheet 2, Exercise 3*], we can identify its tangent space at each point $X \in GL(n, \mathbb{R})$ with the full space of matrices $M(n, \mathbb{R})$.

Remark. For those familiar with categorical language, let us put *Exercise* 2 into context. The category $\mathbf{Man}_{*}^{\infty}$ of pointed smooth manifolds described in the previous remark has the category $\mathbf{Vect}_{\mathbb{R}}$ of pointed vector spaces as a subcategory (but not as a full subcategory, since only linear maps between pointed vector spaces are considered). Therefore, the tangent space yields a functor $T: \mathbf{Vect}_{\mathbb{R},*} \to \mathbf{Vect}_{\mathbb{R}}$ by restricting to this subcategory. But there is also another natural functor between these two categories, namely the forgetful functor $U: \mathbf{Vect}_{\mathbb{R}} \to \mathbf{Vect}_{\mathbb{R}}$ which to a pointed vector space (V, a) associates the underlying vector space V, and to a linear map $L: (V, a) \to (W, b)$ (i.e., a linear map with $La = b$) associates the linear map $L: V \to W$. In the preceding exercise, we showed that η_{\bullet} is a natural transformation from U to T (by showing that the given diagram commutes), and in fact that it is a natural isomorphism (by showing that each individual map $\eta_{(V,a)}: U(V,a) \to T(V,a)$ is an isomorphism).

Exercise 3 (The tangent space to a product manifold): Let M_1, \ldots, M_k be smooth manifolds, where $k \geq 2$. For each $j \in \{1, \ldots, k\}$, let

$$
\pi_j \colon M_1 \times \ldots \times M_k \to M_j
$$

be the projection onto the j-th factor M_j . Show that for any point $p = (p_1, \ldots, p_k) \in$ $M_1 \times \ldots \times M_k$, the map

$$
\alpha\colon T_p\big(M_1\times\ldots\times M_k\big)\longrightarrow T_{p_1}M_1\oplus\ldots\oplus T_{p_k}M_k
$$

$$
v\mapsto \big(d(\pi_1)_p(v),\ldots,d(\pi_k)_p(v)\big)
$$

is an R-linear isomorphism.

Solution: The map α is R-linear; indeed, this follows readily from the fact that ev- \sum_i dim M_i . Thus, to show that α is an isomorphism, it suffices to prove that it is surjecery component $d(\pi_i)_p$ is R-linear. Note also that both vector spaces have dimension tive. We will achieve this by constructing a right-inverse to α .

To this end, for each $1 \leq j \leq k$, define the map

$$
\iota_j: M_j \to M_1 \times \ldots \times M_k
$$

\n
$$
m_j \mapsto (p_1, \ldots, p_{j-1}, m_j, p_{j+1}, \ldots, p_k).
$$

By part (b) of [Exercise Sheet 3, Exercise 4] we infer that ι_j is smooth, because $\pi_{j'} \circ \iota_j$ is either constant or the identity (so in particular smooth) for all $1 \leq j' \leq k$, with $\iota_j(p_j) = p$, so we obtain a map

$$
d(\iota_j)_{p_j}: T_{p_j}M_j \to T_p(M_1 \times \ldots \times M_k).
$$

We now define the following map:

$$
\beta\colon T_{p_1}M_1\oplus\ldots\oplus T_{p_k}M_k\to T_p\big(M_1\times\ldots\times M_k\big)\\ (v_1,\ldots,v_k)\mapsto d(\iota_1)_{p_1}(v_1)+\ldots+d(\iota_k)_{p_k}(v_k).
$$

We will show that β is a right-inverse for α . To this end, let

$$
(v_1,\ldots,v_k)\in T_{p_1}M_1\oplus\ldots\oplus T_{p_k}M_k.
$$

Then

$$
\alpha \circ \beta(v_1,\ldots,v_k) = \alpha\left(\sum_j d(\iota_j)_{p_j}(v_j)\right) = \sum_j \alpha\left(d(\iota_j)_{p_j}(v_j)\right).
$$
 (*)

Now, let $1 \leq i, j \leq k$ be arbitrary. Note that

$$
d(\pi_i)_p \left(d(\iota_j)_{p_j} (\nu_j) \right) = d(\pi_i \circ \iota_j)_{p_j} (\nu_j) = \delta_{ij} \nu_j, \tag{**}
$$

because if $i \neq j$, then $\pi_i \circ \iota_j$ is constant and thus has 0 differential by *Lemma 3.5(a)* (see also [*Exercise Sheet* 5, *Exercise* 5]), and if $i = j$, then $\pi_i \circ \iota_j = \text{Id}_{M_j}$ and thus its differential is the identity by *Exercise* 1(c). Thus, by $(*)$ and $(**)$ we obtain

$$
(\alpha \circ \beta)(v_1,\ldots,v_k)=\sum_j(\delta_{1j}v_1,\ldots,\delta_{kj}v_k)=(v_1,\ldots,v_k),
$$

and since (v_1, \ldots, v_k) was arbitrary, we conclude that $\alpha \circ \beta = Id$. It follows that α is surjective, and hence an isomorphism, as explained above.

Remark. Since the isomorphism α in *Exercise* 3 is canonically defined, independently of any choice of coordinates, we can consider it as a canonical identification, and we will always do so. Thus, for example, we identify $T_{(p,q)}(M \times N)$ with $T_pM \oplus T_qN$, and treat both T_pM and T_qN as subspaces of $T_{(p,q)}(M \times N)$.

Exercise 4 (Tangent vectors as derivations of the space of germs): Let M be a smooth manifold and let p be a point of M .

(a) Consider the set S of ordered pairs (U, f) , where U is an open subset of M containing p and $f: U \to \mathbb{R}$ is a smooth function. Define on S the following relation:

$$
(U, f) \sim (V, g)
$$
 if $f \equiv g$ on some open neighborhood of p.

Show that \sim is an equivalence relation on S. The equivalence class of an ordered pair (U, f) is denoted by $[(U, f)]$ or simply by $[f]_p$ and is called the germ of f at p.

(b) The set of all germs of smooth functions at p is denoted by $C_p^{\infty}(M)$. Show that $C_p^{\infty}(M)$ is an R-vector space and an associative R-algebra under the operations

$$
c[(U, f)] = [(U, cf)], \text{ where } c \in \mathbb{R},
$$

$$
[(U, f)] + [(V, g)] = [(U \cap V, f + g)],
$$

$$
[(U, f)][(V, g)] = [(U \cap V, fg)].
$$

(c) A derivation of $C_p^{\infty}(M)$ is an R-linear map $v: C_p^{\infty}(M) \to \mathbb{R}$ satisfying the following product rule:

$$
v[fg]_p = f(p)v[g]_p + g(p)v[f]_p.
$$

The set of derivations of $C_p^{\infty}(M)$ is denoted by \mathcal{D}_pM .

- (i) Show that \mathcal{D}_pM is an R-vector space.
- (ii) Show that the map

$$
\Phi \colon \mathcal{D}_p M \to T_p M, \ \Phi(v)(f) = v[f]_p
$$

is an isomorphism.

Solution:

(a) Straightforward.

(b) Straightforward. Note that the zero element of the R-vector space (or the associative and commutative R-algebra) $C_p^{\infty}(M)$ is the class $[(M, \mathbb{O})]$, where

$$
\mathbb{O}\colon M\to\mathbb{R},\ x\mapsto 0
$$

is the constant function with value 0 on M , which is clearly smooth by [Exercise Sheet 3, *Exercise* 3, and the unit of the R-algebra $C_p^{\infty}(M)$ is the class $[(M, \mathbb{I})]$, where

$$
\mathbb{I}: M \to \mathbb{R}, \ x \mapsto 1
$$

is the constant function with value 1 on M, which is smooth again by *Exercise Sheet* 3, Exercise 3].

(c) We first prove (i). Clearly, it suffices to show that \mathcal{D}_pM is a vector subspace of the vector space of linear maps $C_p^{\infty}(M) \to \mathbb{R}$ (the dual of $C_p^{\infty}(M)$). In other words, if $\lambda_1, \lambda_2 \in \mathbb{R}$ and $v_1, v_2 \in \mathcal{D}_pM$, we have to show that $\lambda_1v_1 + \lambda_2v_2$ satisfies the product rule. To this end, let $[f]_p$, $[g]_p \in C_p^{\infty}(M)$ be arbitrary. Then

$$
(\lambda_1 v_1 + \lambda_2 v_2) ([fg]_p) = \lambda_1 v_1 ([fg]_p) + \lambda_2 v_2 ([fg]_p)
$$

= $\lambda_1 (f(p) v_1 [g]_p + g(p) v_1 [f]_p) + \lambda_2 (f(p) v_2 [g]_p + g(p) v_2 [f]_p)$
= $f(p) (\lambda_1 v_1 + \lambda_2 v_2) ([g]_p) + g(p) (\lambda_1 v_1 + \lambda_2 v_2) ([f]_p).$

Hence, $\lambda_1v_1 + \lambda_2v_2 \in \mathcal{D}_pM$.

We now prove (ii). First of all, the assertion that $\Phi(v)$: $C^{\infty}(M) \to \mathbb{R}$ is a derivation follows from the fact that

$$
[\bullet]_p \colon C^\infty(M) \to C^\infty_p(M)
$$

$$
f \mapsto [f]_p
$$

is a homomorphism of R-algebras, and thus if $v \in \mathcal{D}_pM$ is a derivation of $C_p^{\infty}(M)$, then $\Phi(v) = v \circ [\bullet]_p$ is a derivation of $C^{\infty}(M)$. Furthermore, Φ is R-linear because it is given by precomposition with $[\bullet]_p$ (so pointwise addition and scalar multiplication are obviously preserved). Therefore, it remains to show that Φ is an isomorphism. To this end, define the map

$$
\Psi: T_p M \to \mathcal{D}_p M
$$

$$
v \mapsto \left([f]_p \in C_p^{\infty}(M) \mapsto \Psi(v) ([f]_p) := v(\tilde{f}) \in \mathbb{R} \right)
$$

where for $[f]_p \in C_p^{\infty}(M)$ we denote by $\widehat{f} \in C^{\infty}(M)$ some smooth function defined on all of M such that $[f]_p = [\tilde{f}]_p$, which exists due to the *extension lemma*. Note that the value $v(\tilde{f})$ is well-defined for $[f]_p$ thanks to *Proposition 3.8*. Moreover, one readily checks that $\Psi(v)$ is indeed a derivation of $C_p^{\infty}(M)$. Now, let us show that Φ and Ψ are mutually inverse. Indeed, given $v \in T_pM$ and $f \in C^{\infty}(M)$, we have

$$
(\Phi \circ \Psi(v))(f) = \Psi(v)([f]_p) = v(\tilde{f}) = v(f),
$$

and thus $\Phi \circ \Psi = \text{Id}$; conversely, given $v \in \mathcal{D}_pM$ and $[f]_p \in C_p^{\infty}(M)$, we have

$$
(\Psi \circ \Phi(v))([f]_p) = \Phi(v)(\widetilde{f}) = v[\widetilde{f}]_p = v[f]_p,
$$

and hence $\Psi \circ \Phi = Id$. In conclusion, Φ is an isomorphism with inverse Ψ .

Exercise 5: Prove the following assertions:

- (a) Tangent vectors as velocity vectors of smooth curves: Let M be a smooth manifold. If $p \in M$, then for any $v \in T_pM$ there exists a smooth curve $\gamma: (-\varepsilon, \varepsilon) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$.
- (b) The velocity of a composite curve: If $F: M \to N$ is a smooth map and if $\gamma: J \to M$ is a smooth curve, then for any $t_0 \in J$, the velocity at $t = t_0$ of the composite curve $F \circ \gamma : J \to N$ is given by

$$
(F \circ \gamma)'(t_0) = dF(\gamma'(t_0)).
$$

(c) Computing the differential using a velocity vector: If $F: M \to N$ is a smooth map, $p \in M$ and $v \in T_pM$, then

$$
dF_p(v) = (F \circ \gamma)'(0)
$$

for any smooth curve $\gamma: J \to M$ such that $0 \in J$, $\gamma(0) = p$ and $\gamma'(0) = v$.

Solution:

(a) Let (U, φ) be a smooth coordinate chart for M centered at p with components functions (x^1, \ldots, x^n) , and write $v = v^i \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x^i}\Big|_p$ in terms of the coordinate basis. For sufficiently small $\varepsilon > 0$, let $\gamma: (-\varepsilon, \varepsilon) \to U$ be the curve whose coordinate representation is

$$
\gamma(t)=(tv^1,\ldots,tv^n).
$$

This is a smooth curve with $\gamma(0) = p$ and

$$
\gamma'(0) = \frac{d\gamma^i}{dt}(0)\frac{\partial}{\partial x^i}\bigg|_p = v^i \frac{\partial}{\partial x^i}\bigg|_p = v.
$$

(b) By definition and by Exercise 1(b) we obtain

$$
(F \circ \gamma)'(t_0) = d(F \circ \gamma) \left(\frac{d}{dt}\Big|_{t_0}\right) = (dF \circ d\gamma) \left(\frac{d}{dt}\Big|_{t_0}\right)
$$

$$
= dF\left(d\gamma \left(\frac{d}{dt}\Big|_{t_0}\right)\right) = dF\left(\gamma'(t_0)\right).
$$

(c) Follows immediately from (a) and (b).