
Introduction to Quantum Information Processing
COM 309 Week 2

Exercise 1

Properties of Pauli matrices
We collect useful properties of Pauli matrices. Let σ⃗ = (σx, σy, σz) a vector formed by the 3
Pauli matrices:

σx =

(
0 1
1 0

)
;σy =

(
0 −i
i 0

)
;σz =

(
1 0
0 −1

)
The identity matrix is denoted I =

(
1 0
0 1

)
.

1. Show that all 2 × 2 matrices, A, can be written as a linear combination of I and σx,
σy, σz:

A = a0I + a1σx + a2σy + a3σz.

This can also be written as A = a0I + a⃗ · σ⃗ where a⃗ · σ⃗ is an ”inner product” between
the ”vectors” a⃗ = (a1, a2, a3) et σ⃗ = (σx, σy, σz).

Check also that if A = A† we have a0, a1, a2, a3 ∈ R.

2. Check the following algebraic identities:

σ2
x = σ2

y = σ2
z = I

σxσy = iσz

σyσz = iσx

σzσx = iσy

Deduce

σxσy + σyσx = 0

σyσz + σzσy = 0

σzσx + σxσz = 0

3. Let [A,B] = AB −BA be the ”commutator”. Show (you may use preceding results)

[σx, σy] = 2iσz

[σy, σz] = 2iσx

[σz, σx] = 2iσy
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These relations are called ”commutation relations for spin”.

4. Compute eigenvalues and eigenvectors of σx, σy, σz. Check that the eigenvalues satisfy
Tr σx = Trσy = Trσz = 0 et det σx = detσy = detσz = −1.

5. Dirac notation: set

|↑⟩ =
(
1
0

)
et |↓⟩ =

(
0
1

)
Check that

σz = |↑⟩ ⟨↑| − |↓⟩ ⟨↓|
σx = |↑⟩ ⟨↓|+ |↓⟩ ⟨↑|
σy = i |↓⟩ ⟨↑| − i |↑⟩ ⟨↓|

Exercise 2

Exponentials of Pauli matrices

1. We define the exponential of a matrix A by (for t ∈ R)

etA =
∞∑
n=0

tnAn

n!
= I + tA+

t2

2!
A2 +

t3

3!
A3 + ...

We want to prove the identity:

eitn⃗·σ⃗ = I cos t+ in⃗ · σ⃗ sin t

where n⃗ is a unit vector and t ∈ R. Remark that this is a generalization of Euler’s
identity:

eiθ = cos θ + i sin θ

To show the identity show first that:

(n⃗ · σ⃗)2 = I

Use Taylor expansions of cos t and sin t to deduce the wanted identity above.

2. Explicitly write 2×2 matrices (in component/array form) exp (itσx); exp (itσy); exp (itσz)
as well as exp (itn⃗ · σ⃗).

Exercise 3

Inner products of tensor products
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1. Which pairs of vectors are mutually orthogonal? Work in Dirac notation.

|0⟩ ⊗ 1√
2
(|0⟩+ |1⟩)

|1⟩ ⊗ 1√
2
(|0⟩+ i|1⟩)(

1√
3
|0⟩+

√
2

3
|1⟩

)
⊗
(

1√
5
|0⟩+ 2√

5
|1⟩
)

1√
2
(|0⟩+ |1⟩)⊗

(
2√
5
|0⟩ − 1√

5
|1⟩
)

2. Given the canonical coordinate representation for the states |0⟩ and |1⟩ compute the
component form (4 components of the above tensor products).

3. Let

A =

(
1 2
3 4

)
, B =

(
0 5
8 10

)
Express the matrices in Dirac notation in the |0⟩, |1⟩ basis. Compute their tensor
products A⊗B and B ⊗ A in Dirac notation.

4. Make the calculation of A ⊗ B and B ⊗ A in component form in the canonical basis.
Check that the result is consistent with the one obtained above in Dirac notation.

Exercise 4

Product versus entangled states
Prove whether the following states are product or entangled states ? (check also they are
correctly normalized)

1. 1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

2. 1
2
(|00⟩+ |01⟩+ |10⟩ − |11⟩)

3. 1√
6
|00⟩+ 1√

3
|01⟩+ 1

6
|10⟩ − 1√

3
|11⟩

4. |β00⟩ = 1√
2
(|00⟩ + |11⟩), |β01⟩ = 1√

2
(|01⟩ + |10⟩), |β10⟩ = 1√

2
(|00⟩ − |11⟩), |β11⟩ =

1√
2
(|01⟩ − |10⟩), .

5. 1√
1+ϵ2

(|00⟩+ ϵ|11⟩), for 0 ≤ ϵ ≤ 1

6. 1√
3
(|001⟩+ |010⟩+ |100⟩)

7. 1√
2
(|000⟩+ |111⟩)

8. 1
2
√
2
(|000⟩+ |100⟩+ |010⟩+ |001⟩+ |110⟩+ |101⟩+ |011⟩+ |111⟩)
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Exercise 5

Unitary transformations
Verify that the following transformations are unitary (check also the identities between ma-
trix tables and Dirac notation):

1. Simple time evolution of the type |ψt⟩ = eiωt|ψ0⟩. This is for example the time evolution
of a free photon of frequency ν = ω/2π or energy E = hν = ℏω.

2. The Hadamard gate.

H =
1√
2

(
1 1
1 −1

)
=

1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|) (1)

Check how the basis |0⟩, |1⟩ is transformed. Remark: in interferometers models for
example a semi-transparent mirror.

3. The X or NOT gate

X =

(
0 1
1 0

)
= |0⟩⟨1|+ |1⟩⟨0|

Check how the basis |0⟩, |1⟩ is transformed. Remark: in interfreometers it models for
example a reflecting mirror.

4. U1 ⊗ U2 if U1 and U2 are unitary. Remark: if Ui, i = 1, 2 act each on a one-qubit
Hilbert space C2 then the tensor product acts on the two-qubit space C2 ⊗ C2.

5. The control-NOT gate. This gate flips the control bit (the second) if the target bit
(the first) is 1.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = (|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨11|+ |11⟩⟨10|)

= (|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X)

Compute the following states:

|βij⟩ = CNOT ⊗H|i⟩ ⊗ |j⟩, i, j = 0, 1

and show that they are equal to the four Bell states introduced in class. Deduce that
{|βij⟩, i, j = 0, 1} is an orthonormal basis. This identity shows that CNOT entangles the
two qubits.
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