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Introduction

Les objets d’étude de la géométrie euclidienne sont des notions idéales, immaté-

rielles. Par exemple, un point en géométrie, ou une droite, n’a aucune épaisseur. On

suppose donc qu’une telle notion abstraite existe, mais on ne peut pas la représenter

matériellement. Il est donc nécessaire de définir les objets dont on parle.

On peut définir les objets géométriques à partir d’objets géométriques plus élé-

mentaires, mais on ne peut pas faire ce processus à l’infini : il y a des objets de base

dont on suppose l’existence, mais on ne cherche pas à les définir. Ce sont les notions

indéfinies. C’est le cas des points et nous admettrons qu’ils existent.

De plus, l’observation de figures et les constructions (forcément imparfaites) ne

suffisent pas à montrer des règles générales. Pourquoi les bissectrices d’un triangle se

coupent-elles au centre du cercle inscrit ? Sur un dessin il se peut que l’imprécision

de la construction ou l’épaisseur du trait de crayon nous induise en erreur et ce n’est

qu’en nous basant sur des faits sûrs et certains - les axiomes - que nous pouvons

nous en convaincre. Il en va de même de la construction à la règle et au compas

du polygone régulier à 17 côtés donnée par Gauss, ou de la non-constructibilité de

l’heptagone régulier.

Il est donc nécessaire de démontrer les propriétés des objets. On peut démontrer

des théorèmes à partir de théorèmes plus simples, mais de même ce processus doit

s’arrêter : il y a certaines propriétés qu’on va supposer sans chercher à les démontrer :

ce sont les axiomes. Ces axiomes doivent refléter les propriétés « intuitives » des

objets géométriques dont ils parlent.

Notre étude de la géométrie du plan se fera donc d’un point de vue axiomatique.

Ceci signifie que nous allons admettre quelques règles de base que notre intuition

nous recommande d’accepter, puis nous construirons une théorie en démontrant les

résultats du plus élémentaire au plus complexe en nous basant sur ces règles de

base uniquement. Ces semaines géométriques nous permettront ainsi de prendre de
1
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l’assurance dans la rigueur et le raisonnement, d’acquérir une plus grande familia-

rité avec la notion de démonstration. Typiquement un problème de géométrie sera

constitué d’une partie liée à l’observation d’une figure, puis de la compréhension

d’une construction qu’il faudra non seulement savoir exécuter, mais aussi décrire

avec précision, et enfin d’une justification qui démontrera finalement que la figure

étudiée possède bien les propriétés prétendues.

Nous introduisons dans les chapitres qui suivent les axiomes nécessaires à l’étude

de la géométrie plane, d’abord des axiomes de nature générale sur les points et les

droites, puis des axiomes qui permettent de mesurer et de reporter des distances

(avec une règle). Un axiome très important pour l’étude des transformations du

plan garantit l’existence de symétries axiales. Les symétries vont nous permettre

de comprendre quelles sont toutes les isométries du plan ! Le dernier axiome dont

nous aurons besoin est celui des parallèles. Son importance est autant historique que

mathématique puisque les mathématiciens se sont demandés pendant deux millé-

naires s’il était nécessaire et que cette question a permis l’apparition de la géométrie

hyperbolique (que l’on étudie parfois en quatrième année du cours Euler).



Chapitre 1

Introduction à la géométrie euclidienne

Le but, c’est que les notions indéfinies et les axiomes qu’on suppose qu’elles

vérifient forment un modèle abstrait des phénomènes qu’on observe sur le papier,

avec une règle et un compas. On ne peut pas prouver que la réalité vérifie les axiomes

de la géométrie euclidienne. On peut seulement vérifier que l’expérience et la théorie

coïncident au niveau de précision que nous avons. Par contre, à l’intérieur d’un

modèle théorique, on peut démontrer de nombreux théorèmes. C’est donc bien à

l’élaboration d’un modèle que nous allons nous atteler ces prochaines semaines. Petit

à petit les axiomes que nous introduisons nous rapprocherons de la géométrie telle

que nous la « connaissons ».

Notons également que l’expérience montre que l’univers n’est pas globalement eu-

clidien, mais qu’il semble l’être localement (relativité générale d’Einstein). La géomé-

trie euclidienne est une bonne approximation de la géométrie de l’univers lorsqu’on

considère des distances à taille humaine.

Euclide, mathématicien grec ayant vécu probablement vers

300 avant J.-C., récolte les connaissances de son temps et les

rassemble, avec ses propres découvertes, dans un recueil, les

Eléments, de manière axiomatique. C’est son approche qui

fait référence depuis plus de 20 siècles !

Il donne cependant quelques preuves intuitives car en fait il n’introduit pas suffi-

samment d’axiomes. Mais il est célèbre pour avoir compris que l’axiome des parallèles

est bien un axiome et non un théorème qui pourrait se déduire des axiomes qui pré-

cèdent.

Il y a plusieurs systèmes d’axiomes équivalents pour la géométrie euclidienne.

Nous allons suivre une voie proche de notre intuition. Nous supposerons en particulier

que l’on peut mesurer des distances et des angles. Dans un cours plus avancé de

géométrie axiomatique, on prendrait une voie plus abstraite encore, sur la base des

axiomes de Hilbert (1900).
3
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1. Notions et axiomes de base

Nous travaillons avec les notions indéfinies suivantes de la géométrie euclidienne :

— Objets : Points, droites.

— Relations entre objets : être entre deux points.

— Fonctions : distance de deux points.

On suppose donné un ensemble, dont les éléments sont appelés points, qu’on

notera par des lettres majuscules A, B, C, . . ., P , Q, R, . . .

Définition 1.1. On appelle figure tout sous-ensemble de l’ensemble des points.

A B

C

D

E

F

G

H

I

J

K

L

M

On suppose donné un sous-ensemble particulier de l’ensemble des figures, dont

les éléments sont appelés droites, qu’on notera en général par des lettres minuscules

a, b, c, d, . . .. Un plan est la donnée d’un ensemble de points et d’un ensemble de

droites, qu’on note Π.

Définissons maintenant les objets avec lesquels nous travaillerons et le vocabulaire

associé.

Définition 1.2. Si un point P appartient à une droite d (c’est-à-dire P ∈ d), on dit

que d passe par P ou que P est sur d. Plusieurs points sont alignés s’ils appartiennent

à la même droite. Lorsque plusieurs droites distinctes ont un point P en commun,

on dit qu’elles se coupent en P ou qu’elles concourent en P . On dit alors qu’elles

sont concourantes.

On peut faire les observations suivantes sur la figure ci-dessus :
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Dans la suite, on considère un plan Π fixé. De plus, à chaque fois qu’on introduit

des notions fondamentales et des axiomes, on suppose que le plan possède ces notions

et vérifient les axiomes. En particulier notre plan vérifiera les axiome de connexion.

Axiome 1.3. Axiomes de connexion.

(C1) Par deux points distincts passent une et une seule droite.

(C2) Toute droite contient au moins deux points.

(C3) Il existe trois points non colinéaires.

Définition 1.4. Etant donnés deux points distincts A et B du plan, la droite AB

est l’unique droite passant par A et B.

Proposition 1.5. Deux droites distinctes peuvent avoir au plus un point en commun.

DéMONSTRATION.

Exemple 1.6. La géométrie sphérique ne vérifie pas les axiomes de connexion. La

géométrie euclidienne ne prétend donc pas permettre de comprendre la géométrie

sur la surface de la Terre !

Dans cette géométrie les points sont les points d’une sphère, les droites sont les

grands cercles qui permettent de se rendre d’un point à un autre sur la sphère par
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le chemin le plus court. On voit qu’il existe un unique grand cercle passant par les

points B et C, mais une infinité qui passent par les deux pôles !

Pour tout triplet de points A, B et P d’une droite d avec A ̸= B, on suppose

donnée une relation : le point P est entre A et B ou il ne l’est pas.

Définition 1.7. Soient A et B des points distincts. Le segment [AB] est l’ensemble

des points A, B et des points de la droite AB entre A et B. Les points A et B sont

appelés les extrémités du segment. On dit que la droite AB est le support du segment

[AB].

A

B

P

C

D

E

Sur cette illustration on voit un point P qui se trouve entre les points A et

B, un segment [DE], ainsi qu’une demi-droite [CB (cette notion sera définie ci-

après). Notons que pour l’instant, la notion indéfinie d’« être entre », et donc celle

de segment, ne sont contraintes par aucun axiome et donc rien ne garantit que les

segments se comportent comme on le désire. Nous devons définir ce langage, en

particulier la notion de demi-droite, et préciser à quels axiomes la relation « être

entre » est soumise.

Axiome 1.8. (S1) Axiome de la demi-droite. Tout point P d’une droite d

détermine deux parties d1 et d2 de d, appelées demi-droites, qui ont les propriétés

suivantes :
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(a) d1 ∪ d2 = d et d1 ∩ d2 = {P}

(b) Si A ̸= B appartiennent à la même demi-droite, disons d1, le segment [AB]

est inclus dans d1.

(c) Quand deux points C ̸= D appartiennent l’un à d1, l’autre à d2, alors le

segment [CD] contient le point P .

ILLUSTRATION.

On note Ad une demi-droite d’extrémité A sur une droite d. De plus, étant donnés

deux points distincts A et B, la demi-droite d’extrémité A contenant B est notée

[AB (et de même pour AB]). On note ]AB[= [AB] \ {A;B} le segment [AB] privé

de ses extrêmités, ]CD la demi-droite [CD privée de son extrêmité, etc.

2. Séparation du plan

De même que le premier axiome de séparation (S1) explique comment un point

sépare une droite en deux demi-droites, le deuxième axiome de séparation (S2) ex-

plique maintenant comment une droite sépare le plan en deux parties.

Axiome 2.1. (S2) Axiome du demi-plan. Toute droite d du plan Π détermine

dans celui-ci deux parties distinctes Π1 et Π2, appelées demi-plans, telles que :

(a) Π1 ∪ Π2 = Π et Π1 ∩ Π2 = d

(b) Si A et B appartiennent au même demi-plan, disons Π1, le segment [AB] est

inclus dans Π1.

(c) Quand deux points C et D appartiennent l’un à Π1, l’autre à Π2, alors il

existe sur la droite d au moins un point P du segment [CD].
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ILLUSTRATION.

Définition 2.2. Soit d une droite et Π1 l’un des demi-plans déterminés par d. La

droite d est appelée la frontière du demi-plan Π1. Les points du demi-plan n’appar-

tenant pas à la frontière sont appelés les points intérieurs du demi-plan. L’ensemble

des points intérieurs, i.e. Π1 − d, s’appelle un demi-plan ouvert.

Remarque 2.3. Considérons une droite d, C un point intérieur d’un demi-plan

déterminé par d et D un point de l’autre demi-plan. Alors le segment [CD] intersecte

la droite d en un unique point. La raison est la suivante :

Définition 2.4. Une ligne polygonale ou ligne brisée est une suite finie de segments

telle que deux segments consécutifs ont une extrémité commune. Les extrémités com-

munes de ces segments sont les sommets de la ligne brisée, tandis que les extrémités

libres du premier et dernier segments sont appelées les extrémités de la ligne brisée.

Voici quelques exemples de lignes polygonales.
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Définition 2.5. Une ligne polygonale est tendue si tous ses segments sont supportés

par une même droite. Un polygone est une ligne polygonale dont les extrémités sont

confondues. Il n’a donc que des sommets.

Parmi les exemples dessinés ci-dessus lesquels sont des polygones ? des lignes

polygonales tendues ?

Convention 2.6. Dans la suite, toutes les lignes polygonales tendues seront sup-

posées vérifier la condition que leurs segments ne se « chevauchent » pas, i.e. que si

A, B, C sont trois sommets consécutifs d’une ligne tendue, alors C n’est pas sur la

même demi-droite que A par rapport à B.

Avec cette convention, un polygone ne peut pas être tendu (on dit « dégénéré »).

En particulier, un polygone a au moins trois sommets distincts. Voici un exemple et

un contre-exemple :
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Définition 2.7. Un triangle est un polygone à trois sommets. Un triangle dont les

sommets sont A,B et C est souvent noté ∆ABC pour mettre l’accent de manière

graphique sur le fait qu’il s’agit d’un triangle.

A

B

C

3. La notion de distance

On suppose donné pour toute paire de points A et B du plan un nombre réel

positif, noté d(A,B), appelé la distance de A et B.

Définition 3.1. La longueur d’un segment [AB] est la distance de ses extrémités.

On la note AB. La longueur d’une ligne polygonale A1A2 . . . An est la somme des lon-

gueurs des segments qui la composent. On la note A1A2 . . . An. On appelle périmètre

la longueur d’un polygone.

Les axiomes qui régissent la distance sont nombreux !

Axiome 3.2. Axiomes de la distance. Soient A,B,C des points du plan.

(D1) d(A,B) = d(B,A)

(D2) d(A,B) = 0 ⇐⇒ A = B

(D3) (Inégalité triangulaire) d(A,B) + d(B,C) ≥ d(A,C).

A

B

C

(D4) d(A,B) + d(B,C) = d(A,C) ⇐⇒ B appartient au segment [AC].
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(D5) (Report d’une distance sur une demi-droite) Soient Cd une demi-droite et

[AB] un segment. Il existe sur Cd un unique point D tel que d(C,D) =

d(A,B).

A

B

C

(D6) (Construction du triangle à partir de trois segments) Soient trois segments

[AB], [CD], [EF ] qui vérifient les inégalités |EF − CD| < AB < EF + CD.

Il existe alors exactement deux points P et P ′ tels que AP = AP ′ = CD et

BP = BP ′ = EF .

A
B

C D

E F

(D7) Pour tout réel strictement positif r, il existe un segment de longueur r.
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Remarque 3.3. Les axiomes (D3) et (D4) expriment le fait que le segment [AB]

est la ligne polygonale la plus courte d’extrémités A et B. Pour se rendre d’un point

A à un point B, il suffit donc de suivre la (seule) droite passant par ces deux points.

L’axiome (D7) n’est pas nécessaire, mais simplifie certains énoncés. Par contre il

s’agit bien d’un axiome : il n’est pas impliqué par ce qui précède.

Proposition 3.4. Dans un triangle, la longueur de chaque côté est comprise entre

la somme et la valeur absolue de la différence des longueurs des deux autres côtés.

DéMONSTRATION.
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Les symétries axiales

C’est une idée relativement moderne de chercher à comprendre une géométrie

(euclidienne plane dans notre cas) en étudiant comment on peut transformer les

figures par des opérations qui sont compatibles avec la géométrie, qui ne modifient

pas les distances. C’est ainsi que nous serons amenés à étudier des propriétés de

symétrie. Avant cela, nous devons définir ce qu’est une transformation, d’autant

plus que nous n’avons pas encore étudié les fonctions de manière ensembliste.

1. Les transformations géométriques

Définition 1.1. Une transformation géométrique du plan est une correspondance

qui à tout point P du plan fait correspondre un unique point P ′ du plan.

f : Π → Π

P 7→ P ′ = f(P )

Le point f(P ) est appelé l’image de P et on dit que f transforme P en f(P ).

Exemple 1.2. L’application identité. On définit la transformation id : Π → Π

en posant id(P ) = P pour tout point P du plan. Autrement dit l’identité transforme

tout point en lui-même et par conséquent toute figure en elle-même. Rien ne bouge !

Exemple 1.3.

Exemple 1.4. L’application constante. On choisit un point P du plan et on

définit une transformation cP : Π → Π en posant cP (Q) = P pour tout point Q du

plan. Ainsi l’image d’une droite – ou de toute autre figure – est aussi réduite à ce

point P .
13
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Définition 1.5. Soit f une transformation du plan. Si F ⊂ Π est une figure du

plan, on note f(F ) la figure du plan définie par

f(F ) = {P ∈ Π |P = f(P ′) pour un P ′ ∈ F}

La figure f(F ) est appelée l’image de la figure F sous la transformation f et on dit

que f transforme F en f(F ).

Il existe aussi une transformation géométrique du plan appelée inversion qui

transforme la plupart des droites en cercles ! Voici une illustration de l’effet de l’in-

version par rapport au cercle Γ.

Γ

d

C

B

P

Q
Y

X

En général on pourrait imaginer que l’image d’un quadrilatère sera une sorte

d’amibe informe :

Une ligne polygonale n’est pas seulement la donnée d’une figure (c’est-à-dire un

ensemble de points), mais d’une suite ordonnée de segments. L’ordre des sommets
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est important. L’image d’une ligne polygonale A1A2 . . . An donnée par les segments

[A1, A2], [A2, A3], . . . , [An−1, An] est la suite f([A1, A2]), f([A2, A3]), . . . , f([An−1, An]).

Les transformations transforment les points en points et les figures en figures, mais

elles ne transforment pas nécessairement une droite en droite, ni un segment en seg-

ment. En particulier, l’image d’une ligne polygonale n’est pas nécessairement une

ligne polygonale.

2. Les isométries

Une transformation géométrique du plan f « envoie »un point sur un point, mais

rien n’est spécifié quant à l’image des droites et des segments. On étudie mainte-

nant un type de transformations qui ont la propriété de préserver les droites et les

segments, ce sont les transformations qui préservent la distance entre points. Notre

compréhension de la géométrie plane englobe jusqu’ici la notion de points, de droites,

de segments, mais aussi de distance et donc de construction de figures simples (tri-

angles). L’étude des isométries complétera cela en y ajoutant la notion de symétrie.

Sur l’illustration suivante les deux heptagones ABCDEFG et IJKLMNH sont

isométriques, mais nous devons donner un sens précis à cela.

A

B

C

DE

F

G

H

I
J

K

L

M

N

Définition 2.1. Une isométrie est une transformation géométrique du plan qui pré-

serve les distances, c’est-à-dire une transformation f : Π → Π telle que d(f(A), f(B)) =

d(A,B) pour tous A,B ∈ Π.
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Définition 2.2. Deux figures F et F ′ sont dites isométriques s’il existe une isométrie

qui transforme F en F ′. En particulier deux lignes polygonales sont isométriques s’il

existe une isométrie qui transforme l’une en l’autre, à l’ordre des segments près.

La transformation identité, notée id : Π → Π, est une isométrie. Elle envoie tout

point A sur lui-même.

Remarque 2.3. Soit f une isométrie. Alors

(1) f fait correspondre deux points distincts à deux points distincts (on dit que

f est injective) :

A ̸= B ⇒ f(A) ̸= f(B)

Nous démontrons la “contraposée".

(2) Tout point du plan est l’image d’un point du plan sous f :

Si P ∈ Π, il existe P ′ ∈ Π tel que P = f(P ′).

On dit que f est surjective.

L’injectivité et la surjectivité de f impliquent l’existence d’une transformation

inverse, c’est-à-dire d’une transformation f−1 : Π → Π telle que f(f−1(P )) = P =

f−1(f(P )) pour tout point P du plan. De plus, cette transformation est aussi une

isométrie.

Proposition 2.4. Soit f une isométrie. Alors les images par f de trois points alignés

sont trois points alignés. Ainsi l’image d’une droite est une droite, l’image d’un

segment est un segment de même longueur et l’image d’une ligne polygonale est une

ligne polygonale de même longueur.



2. LES ISOMÉTRIES 17

DéMONSTRATION. Soient A,B,C trois points alignés distincts. Alors l’un des

trois points se trouve entre les deux autres par l’axiome de séparation (S1). Disons

C ∈ [A,B]

Axiome 2.5 (Axiome de symétrie). Soit d une droite quelconque. Il existe exac-

tement deux isométries qui laissent fixes tous les points de d. Ce sont :

(1) L’identité.

(2) Une isométrie qui transforme tout point P situé sur un demi-plan ouvert

déterminé par d en un point P ′ situé sur l’autre demi-plan ouvert déterminé

par d.

Cette isométrie est appelée symétrie axiale suivant d ou symétrie d’axe d ou encore

réflexion par rapport à d. On la note souvent Sd.

Dans la pratique voici comment on construit le symétrique d’un point. Nous

allons tracer des cercles, que nous devons d’abord définir.

Définition 2.6. Soit O un point du plan et r un nombre réel > 0. Le cercle de centre

O et de rayon r est la figure constituée de tous les points P qui vérifient OP = r.

On le note parfois C(O, r).

Un cercle est une figure non vide grâce à l’axiome (D7) qui nous assure qu’il

existe bien un segment de longueur r et donc des points sur le cercle par l’axiome

de report (D5).

Marche à suivre (Construction du symétrique d’un point P ) :

Si P est sur d, il n’y a rien à faire : P est sa propre image. Supposons que P /∈ d.

(1) Choisir deux points distincts A et B sur d.
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(2) Tracer les cercles de centre A et de centre B passant par P .

(3) Ces cercles se coupent en deux points : le point P et un point P ′ qui est le

point cherché.

P

Justification (de la construction). Soit d une droite. Notons f la symétrie

d’axe d. Si P ∈ d, alors f(P ) = P . Supposons que P /∈ d.

Les trois segments [AB], [AP ] et [BP ] vérifient les conditions de l’axiome de

construction des triangles (D.6) :

|AP −BP | < AB < AP +BP.

puisque ces trois segments forment un triangle car P ne se trouve pas sur la droite

d = AB.

Par conséquent, l’axiome (D6) implique qu’il existe exactement deux points R et

S tels que RA = PA et RB = PB, ainsi que SA = PA et SB = PB.
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Une conséquence de la construction précédente est que si P ′ est le symétrique de

P par rapport à d, alors P est le symétrique de P ′ par rapport à d. Nous découvrirons

plus tard d’autres isométries qui n’ont pas cette propriété !

Proposition 2.7. Une symétrie est son propre inverse.

Démonstration. C’est probablement clair, mais répétons-le. La seule isomé-

trie qui transforme Sd(P ) en P pour tous les points P du plan est Sd puisque le

symétrique du symétrique d’un point est ce même point. □

Définition 2.8. Deux figures, respectivement deux lignes polygonales, sont dites

symétriques l’une de l’autre par rapport à une droite a lorsqu’elles sont isométriques

sous la symétrie d’axe a. Une figure, respectivement une ligne polygonale, admet un

axe de symétrie a lorsqu’elle est symétrique d’elle-même par rapport à a.

Exemple 2.9. Les deux demi-plans Π1 et Π2 déterminés par une droite d sont

symétriques l’un de l’autre, si bien que toute droite du plan est un axe de symétrie

du plan. L’axiome de symétrie exprime que le plan est symétrique par rapport à

n’importe laquelle de ses droites.

Toute droite s’admet elle-même comme axe de symétrie. Plus intéressant, étant

donné un point P hors d’une droite d et P ′ son image sous la symétrie d’axe d,

la droite d est un axe de symétrie de la droite PP ′ puisque l’image de PP ′ est la

droite P ′P .
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Nous n’avons pas encore étudié le carré, mais nous nous permettons d’illustrer

la définition précédente en déterminant tous les axes de symétrie du carré.

Exemple 2.10. Soit A,B,C,D les sommets d’un carré.

A

B

C

D

3. La médiatrice

Pour décrire une figure il est souvent pratique d’expliquer quelle propriété véri-

fient les points de cette figure. Une propriété géométrique peut être donnée en terme

de distance, de symétrie, etc.

Définition 3.1. Soit (P) une certaine propriété géométrique que peut posséder un

point du plan. On appelle lieu géométrique des points du plan possédant la propriété

(P) la figure formée de tous les points du plan ayant la propriété (P) :

LG(P) = {A ∈ Π |A a la propriété (P)}
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Exemple 3.2. Soient A ̸= B des points du plan. On considère les propriétés

(1) (P1) : « être aligné avec A et B » ;

(2) (P2) : « être entre A et B » ;

(3) (P3) : « être à des distances de A et de B dont la somme vaut AB ».

Nous avons déjà rencontré le cercle, le lieu géométrique des points du plan situés

à une distance r donnée d’un point O donné. Voici encore un peu de vocabulaire.

Définition 3.3. Soit Γ = C(O, r) un cercle de centre O et de rayon r.

(1) Un rayon est une demi-droite d’extrémité le centre du cercle. On appelle aussi

rayon un segment dont l’une des extrémités est le centre du cercle et l’autre

est sur le cercle. Lorsqu’on dit le rayon, on parle toujours de la longueur des

segments rayons.

(2) Un diamètre est une droite passant par le centre. On appellera aussi diamètre

un segment passant par le centre et ayant ses extrémités sur le cercle ou encore

la longueur de ce segment (qui est la même pour tous les segments diamètres).

(3) Une sécante est une droite passant par deux points distincts du cercle.

(4) Une corde est un segment admettant pour extrémités deux points du cercle.

(5) Un arc de cercle est l’intersection d’un cercle avec un demi-plan déterminé

par une sécante. Les deux points A et B d’intersection de la sécante et du

cercle sont les extrémités de l’arc. Chaque sécante détermine donc deux arcs.

On dit que la corde [AB] sous-tend un arc ÃB.

(6) L’intérieur d’un cercle est le lieu géométrique des points dont la distance au

centre du cercle est inférieure (strictement) au rayon de ce cercle.

(7) Un disque est la réunion d’un cercle et de son intérieur.
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(8) L’extérieur d’un cercle est le lieu géométrique des points dont la distance au

centre du cercle est supérieure (strictement) au rayon. C’est le complémentaire

du disque dans le plan.

Indique sur l’illustration ci-dessous la corde [AB], l’arc de cercle ÃB, etc.

O

B

A

Théorème 3.4. Soient A et B deux points distincts. Il existe alors exactement

une réflexion transformant A en B. De plus l’axe de cette réflexion est le lieu géo-

métrique des points équidistants à A et B. Cet axe coupe le segment [AB] en un

point.

Marche à suivre :

(1) Tracer un cercle (A, r) avec r > 1
2
AB.

(2) Tracer le cercle (B, r). Ces deux cercles se coupent en deux points distincts

C et D par l’axiome de construction des triangles (D6).

(3) Tracer la droite CD. C’est la médiatrice m du segment [AB].
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A

B

DéMONSTRATION.



3. LA MÉDIATRICE 24

Définition 3.5. Soient A et B deux points distincts. L’unique droite a telle que

la réflexion d’axe a transforme A en B s’appelle la médiatrice de A et B (ou du

segment [AB]). Le point M qui est l’intersection de a et du segment [AB] est appelé

le milieu du segment [AB].

Par définition la médiatrice d’un segment est un axe de symétrie de ce segment

(la symétrie en question échange les extrémités). La construction de la symétrie à la

règle et au compas utilise le fait qu’une symétrie est une isométrie, elle préserve les

distances. Grâce à cela nous avons compris que la médiatrice est le lieu géométrique

des points équidistants des extrémités du segment. Il est important de bien distinguer

la définition d’une médiatrice et la propriété géométrique dont celle-ci jouit.



Chapitre 3

Les angles

Nous sommes prêts maintenant à parler d’angles. Nous commençons avec la no-

tion de perpendicularité, étroitement liée à celle d’angle droit, puis nous étudierons

les angles sans toutefois les mesurer pour le moment. Nous terminons ce chapitre

avec la construction de la bissectrice d’un angle.

1. La perpendicularité

Notre approche nous permet de définir quand deux droites sont perpendiculaires

sans devoir faire référence à la notion d’angle droit.

Définition 1.1. Deux droites distinctes sont perpendiculaires entre elles lorsque

chacune d’elles admet l’autre comme axe de symétrie. On note a ⊥ b pour dire que

« a est perpendiculaire à b » ou « b est perpendiculaire à a ».

A

A′
B

B′

Remarque 1.2. Si a et b sont des droites distinctes, il suffit de vérifier que l’une des

deux droites est un axe de symétrie de l’autre, et on a automatiquement l’inverse.

En effet, supposons que b est un axe de symétrie de a et montrons qu’alors a est un

axe de symétrie de b.

Si A ∈ a est un point qui ne se trouve pas sur b, alors son image par la symétrie

d’axe b est un point A′ qui se trouve sur a à la même distance de tout point de la

droite b que A (par construction du symétrique). Ainsi la droite b est la médiatrice

du segment [AA′]. Maintenant, si B ∈ b, son image par la symétrie d’axe a est un
25
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point B′ qui se trouve à la même distance de A que B et à la même distance de A′

que B. Ces distances étant toutes égales, le point B′ se trouve aussi sur la médiatrice

de [AA′], c’est-à-dire b.

A

a

b

B

La médiatrice m d’un segment [AA′] est donc toujours perpendiculaire à la droite

AA′ qui supporte le segment [AA′].

Théorème 1.3. Soit d une droite. Par tout point P du plan passe une unique

droite perpendiculaire à la droite d.

Démonstration. Nous allons construire cette perpendiculaire pour montrer

qu’elle existe et prouver qu’il n’y en a qu’une. Le premier cas est celui où P ̸∈ d.

P

d



1. LA PERPENDICULARITÉ 27

Justification. Notons que la droite PSd(P ) est bien définie car P ̸= Sd(P ). En

effet, comme P est hors de d, Sd(P ) est de l’autre côté de la droite d, par l’axiome de

symétrie. De plus si la perpendiculaire existe, d doit être un axe de symétrie de cette

droite, elle doit donc passer par P et Sd(P ). Autrement dit l’unicité est démontrée.

On montre maintenant que la droite d est un axe de symétrie de la droite PSd(P ).

On aura par conséquent construit une droite perpendiculaire à d passant par P par

définition de la perpendicularité.

La symétrie Sd transforme P en Sd(P ) par définition, et donc Sd(P ) en P car

une symétrie est son propre inverse (proposition du cours précédent). Comme les

isométries préservent les droites, la symétrie Sd transforme la droite PSd(P ) en une

droite passant par l’image de P , soit Sd(P ), et par l’image de Sd(P ), soit P . La

droite PSd(P ) est donc sa propre image sous Sd.

Le deuxième cas à traiter est celui où P est sur d.

P

d

Justification. Montrons que la construction précédente fait sens et donne bien

une perpendiculaire à d passant par P . Sur chaque demi-droite de d d’extrémité P ,

il existe exactement un point à distance r de P , par les axiomes (D5) et (D7). Ce
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sont les points A et B construits ci-dessus. On sait que la médiatrice d’un segment

est perpendiculaire au support de celui-ci. Donc la médiatrice p de [AB] est perpen-

diculaire à AB = d. Le point P est à équidistance de A et B, c’est le centre du cercle

construit, et le théorème de la médiatrice identifie celle-ci comme le lieu des points

équidistants des extrémités du segment. Ainsi p passe par P .

Montrons l’unicité. Soit a une droite perpendiculaire à d passant par P . Soient A

et B les deux points définis ci-dessus. On va montrer que a = p, la médiatrice de [AB].

La symétrie d’axe a transforme d en elle-même, par définition de la perpendicularité.

Le point A est donc transformé en un point A′ sur d, dans l’autre demi-plan déterminé

par a que A. Le point A′ doit donc se trouver sur la demi-droite [PB. Or sur cette

demi-droite, il n’existe qu’un seul point à distance r de P , par l’axiome (D5). Ainsi,

on doit avoir A′ = B. La réflexion d’axe a transforme donc A en B. Autrement dit,

a est la médiatrice p de [AB]. □

Remarque 1.4. Il existe une deuxième méthode pour construire la perpendiculaire

à une droite d passant par un point P ̸∈ d. La justification de cette méthode nécessite

néanmoins plus de connaissances sur les cercles.

A

B

d

p

P

C

Voici donc simplement la marche à suivre :

(1) Choisir un point C situé de l’autre côté de d que P .

(2) Tracer le cercle de centre P et de rayon PC. Il coupe d en A et B.

(3) Construire la médiatrice p du segment [AB]. C’est la droite cherchée.



2. LES ANGLES RECTILIGNES ET LES ANGLES PLANS 29

Définition 1.5. La projection d’un point P sur une droite d est le point d’intersec-

tion de la droite d avec la perpendiculaire à d issue de P . On note projd(P ) ce point.

La distance d’un point P à une droite d est la distance de P à projd(P ). On la note

d(P, d). Si le point P est sur la droite d, alors projd(P ) = P et d(P, d) = 0.

2. Les angles rectilignes et les angles plans

On donne d’abord la définition d’angle rectiligne, mais à cause de l’indétermi-

nation (de quel angle parle-t-on vraiment ?) il faudra préciser ce qu’on entend par

intérieur et extérieur d’un angle, ce qui nous permettra finalement de parler d’angles

plans.

Définition 2.1. Un angle rectiligne est la donnée d’un point et de deux demi-droites

ayant ce point comme extrémité. Ces deux demi-droites sont appelées les côtés de

l’angle et leur extrémité commune, le sommet.

On note Sab un angle rectiligne de côtés Sa et Sb et de sommet S. Le mot angle

rectiligne s’abrège ∠. On désigne parfois les angles rectiligne par une lettre grecque

α, β, . . . ou par un numéro ∠1,∠2, . . ., ou encore par des points qui les déterminent,

comme ∠ABC,∠USV, . . ., où le sommet est la lettre du milieu. On note aussi ’ABC

pour ∠ABC.

ILLUSTRATION.

Remarque 2.2. Un angle n’est pas une figure. En effet, un angle est une paire

(Sa, Sb) formée de deux demi-droites de même extrémité. En particulier, un angle

plat n’est pas seulement la figure formée par l’ensemble de ces points, c’est-à-dire

une droite, mais la donnée d’une droite et d’un point distingué sur cette droite (le

sommet de l’angle).
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Fig. 70 

1. Angle nul. Angle ayant ses côtés confondus. C'est 
en · fait une demi-droite. 

2. Angle plat. Angle ayant ses côtés dans le pro­
longement l'un de l'autre. C'est ~ne droite sur ! 
laquelle on a mis un point en évidence. 

3. Angle droit. Angle dont les côtés ont des sup­
ports perpendiculaires. 

4. Angle aigu. Angle non droit tel que tout point 
pris sur l'un de ses côtés se projette sur l'autre 
côté. 

5. Angle obt~s. Angle non droit tel que tout point 
pris sur l'un de ses côtés se projette sur le pro­
longement de l'autre côté . . 

Angles adjacents. Deux angles sont dits adjacents 
lorsqu'ils ont un côté identique. Sur la figure, les 
angles Sab et Sbc sont adjacents; les angles 
Sab et Sac aussi, d'ailleurs. 

Angles adjacents supplémentaires. Deux angles 
sont dits adjacents supplémentaires lorsqu'ils 
sont adjacents et que leurs côtés non confondus 
sont dans le prolongement l'un de l'autre. C'est 
le cas des angles 1 et 2 sur la figure ci-contre; 

8. Angles suppléD\entaires. Deux angles sont dits 
supplémentaires lorsque, par un déplacement 
convenable appliqué à l'un d'eux, il est possible 
de les rendre adjacents supplémentaires. Il en 
est ainsi des angles IX et ~ de la figure 708) • 

9. Angles opposés par le sommet. Deux angles sont 
dits opposés par le sommet quand les côtés de 
l'un sont les prolongements des côtés de l'autre. 
Sur la · figure ci-contre, les angles u et u' sont 

. opposés par le sommet; les angles y et y' aussi. 

On pourrait encore ajouter la définition d’un angle plein comme étant l’extérieur

d’un angle nul, mais définissons d’abord intérieur et extérieur d’un angle.
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Définition 2.3. L’intérieur d’un angle rectiligne ’ABC ni nul ni plat est l’intersec-

tion Π̊1 ∩ Π̊2 où

— Π̊1 est le demi-plan ouvert de frontière AB contenant C,

— Π̊2 est le demi-plan ouvert de frontière BC contenant A.

L’intérieur d’un angle rectiligne nul est vide et l’intérieur d’un angle rectiligne plat est

indéterminé. Un angle-plan saillant est la réunion d’un angle rectiligne non plat et de

son intérieur ou d’un angle rectiligne plat et de l’un des demi-plans qu’il détermine.

A

B

C

DEFGHIJK

Définition 2.4. L’extérieur d’un angle rectiligne ’ABC ni nul ni plat est la réunion

Π̊1 ∪ Π̊2 où

— Π̊1 est le demi-plan ouvert de frontière AB ne contenant pas C,

— Π̊2 est le demi-plan ouvert de frontière BC ne contenant pas A.

L’extérieur d’un angle rectiligne nul Sab est le complémentaire de la demi-droite

Sa = Sb dans le plan. L’extérieur d’un angle rectiligne plat n’est pas déterminé. Un

angle-plan rentrant est la réunion d’un angle rectiligne non plat et de son extérieur.

Pour distinguer les angles-plans des angles rectilignes, on peut utiliser le symbole

∢ à la place de ∠. Ainsi tout angle rectiligne détermine deux angles-plans. Sans

autre précision, l’angle-plan associé à un angle rectiligne non plat est son angle-plan

saillant. S’il n’y a pas d’ambiguïté, on dira simplement angle pour un angle-rectiligne

ou son angle-plan (saillant) associé.

3. La bissectrice

Nous sommes prêts à rencontrer, après la médiatrice d’un segment, notre deuxième

droite remarquable. Si la médiatrice est l’axe de symétrie d’un segment, la bissectrice
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est l’axe de symétrie d’un angle. Nous commençons avec le cas spécial d’un angle

plat.

Remarque 3.1. Un angle plat Sab possède deux axes de symétrie, la perpendiculaire

à a = b passant par S et la droite a = b.

Théorème 3.2. Un angle Sab non plat admet un unique axe de symétrie, appelé

la bissectrice de Sab.

Démonstration. Si l’angle est nul, alors il n’y a rien à faire : l’axe de la symétrie

est la droite qui supporte l’angle, qui est laissé fixe par l’axiome de symétrie. Cet axe

de symétrie est unique. En effet la symétrie Sd doit fixer le sommet S et donc d doit

passer par S. Donc soit d = a, soit d est la perpendiculaire à a passant par S. Mais

la symétrie d’axe d dans ce dernier cas ne fixe pas la demi-droite Sa, puisqu’elle la

transforme en l’autre demi-droite Sa.

Supposons donc que l’angle n’est pas nul et montrons d’abord l’existence en

proposant une construction d’un axe de symétrie.
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Marche à suivre.

S

Justification. Montrons que la construction précédente fait sens et donne bien

un axe de symétrie de l’angle. Il existe sur chaque demi-droite Sa et Sb un unique

point à distance r de S par l’axiome (D5). Ce sont les points A et B. Ces points

sont distincts, puisque distincts de S (r > 0) et sur des demi-droites différentes. Ils

admettent donc une médiatrice s. Cette médiatrice est un axe de symétrie de Sab :

Montrons maintenant l’unicité de la bissectrice. Soit d un axe de symétrie d’un

angle Sab. Considérons deux points A et B sur Sa et Sb comme ci-dessus. Comme
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les isométries préservent les demi-droites, la symétrie Sd doit transformer Sa en Sb.

En particulier, elle fixe le sommet S. De plus, elle transforme le point A en un point

sur Sb qui est à la distance r de S (par préservation des distances). Or, par l’axiome

(D5), il n’existe qu’un seul point avec cette propriété. Donc, A′ = B. Autrement dit,

d est la médiatrice de A et B. □

Théorème 3.3. Soit Sab un angle non plat et soit s sa bissectrice. Alors la

demi-droite Ss qui est contenue dans l’angle-plan associé est le lieu géométrique des

points de l’angle-plan qui sont à équidistance des droites a et b.

Démonstration. Soit P un point de la demi-droite Ss. On abaisse la per-

pendiculaire à Sa issue de P et on appelle A le pied de la perpendiculaire sur a.

On construit ensuite B = Ss(A). On observe alors que Ss([PA]) = [PB] et que,

puisque PA et a sont perpendiculaires, leurs images par Ss aussi le sont : PB ⊥ b.

Par conséquent B est le pied de la perpendiculaire à b issue de P , autrement dit

d(P, a) = d(P, b). □

S

B

A

s

Q
P

4. Angles opposés par le sommet

Grâce à notre parfaite compréhension de ce qu’est une bissectrice, nous pouvons

démontrer que deux angles opposés par le sommet sont isométriques, c’est-à-dire

qu’il existe une isométrie qui transforme l’un en l’autre.

Proposition 4.1. Deux angles Sab opposés par le sommet sont isométriques via

la réflexion dont l’axe est la bissectrice t de l’un des deux angles Sab adjacents-

supplémentaires (et donc des deux).
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Démonstration. Considérons un angle ’ASB avec A ∈ a et B ∈ b. On choisit

encore deux points A′ sur a de l’autre côté de S que A et B′ sur b de l’autre côté de

S que B. Soit enfin t la bissectrice de l’angle ’ASB′ :

S

A

a

b
B

□



Chapitre 4

Les parallèles

Ce chapitre est consacré aux questions liées à la notion de parallélisme. S’il est

possible de construire une parallèle à une droite donnée et passant par un point

donné, nous aurons besoin d’un dernier axiome pour imposer l’unicité de cette pa-

rallèle. Cette question a occupé les mathématiciens pendant environ deux millé-

naires, depuis Euclide qui s’était rendu compte de la nécessité de cet axiome mais

ne connaissait pas la géométrie hyperbolique dans laquelle de nombreuses parallèles

différentes passent par un même point.

1. Droites parallèles

Nous allons d’abord faire tout ce qu’il est possible de faire sans introduire d’axiome

supplémentaire.

Définition 1.1. Deux droites a et b sont parallèles lorsqu’elles n’ont aucun point

commun : a ∩ b = ∅.
38
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Deux droites confondues ne sont pas parallèles, car pour toute droite a, a∩a = a.

Deux droites perpendiculaires ne sont pas parallèles, car elles se coupent en un point.

Remarque 1.2. Position relative de deux droites. Deux droites ne peuvent

qu’être confondues, se couper en un seul point (on dit qu’elles sont sécantes ou

concourantes), ou alors être parallèles. Ce sont les axiomes de connexion qui le ga-

rantissent.

Nous voici à même de construire une parallèle à une droite donnée passant par

un point donné.

Proposition 1.3. Par tout point P situé hors d’une droite d passe au moins une

parallèle à d. Une parallèle à d passant par P est donnée par la perpendiculaire à la

droite a passant par P , où a est la perpendiculaire à d passant par P .

Démonstration.

P

d

Marche à suivre.
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Justification. Nous savons que par un point P hors de d passe une unique

perpendiculaire à d. Notons a cette perpendiculaire, comme ci-dessus. Maintenant,

par P passe une unique perpendiculaire à a, qu’on note p. Nous devons montrer que

p est parallèle à d. On sait que p est distincte de d car p contient le point P qui est

hors de d.

Montrons que p et d ne se coupent pas.

d

a

P p

□

Remarque 1.4. Il existe une deuxième méthode pour construire une parallèle à d

passant par P . C’est la méthode dite du losange, mais nous devons attendre l’étude

des quadrilatères pour pouvoir la justifier.

Marche à suivre.

(1) Choisir un point A sur d et tracer le cercle (A, r), avec r = AP . Ce cercle

coupe d en deux points. Soit B l’un de ses points.

(2) Tracer les cercles (B, r) et (P, r). Ces cercles se coupent en A et en un point

C distinct de A. La droite PC est la droite recherchée.
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A

B

P

C

Attention ! L’unicité de la parallèle à d passant par P n’est pas démontrable à

partir des axiomes. C’est un nouvel axiome de la géométrie euclidienne.

Axiome 1.5. des parallèles. (P) Par tout point P hors d’une droite d passe au

plus une parallèle.

Puisque nous avons déjà montré qu’il existe au moins une parallèle, l’axiome (P)

implique que cette parallèle est unique.

2. La symétrie centrale

Nous étudions dans cette section un nouveau type d’isométrie, la symétrie cen-

trale. Plus tard nous verrons que les symétries centrales (à ne pas confondre avec les

symétries axiales) sont des cas particuliers de rotations.

Proposition 2.1. Soit O un point du plan Π. Il existe alors une unique isométrie

SO : Π −→ Π du plan qui fixe O et telle que le point O soit le milieu du segment

[PSO(P )] pour tout point P distinct de O.



2. LA SYMÉTRIE CENTRALE 42

Démonstration. Pour construire l’image d’un point P distinct de O il suffit

de tracer la demi-droite [PO et de reporter la distance OP sur la demi-droite de

l’autre côté de O que P .

A

O

B

C

Pour démontrer qu’il s’agit bien d’une isométrie, la manière la plus élégante de

faire est de remarquer que la transformation du plan décrite correspond à effectuer

d’abord une symétrie axiale d’axe passant par O, puis une seconde symétrie axiale

d’axe perpendiculaire au premier axe et passant par O. Vous ferez ceci en exercice.

□

Définition 2.2. L’isométrie décrite dans la proposition précédente est appelée sy-

métrie (centrale) de centre O ou demi-tour de centre O. On dit qu’une figure F

admet un centre de symétrie O si elle est transformée en elle-même par la symétrie

de centre O. Une ligne polygonale a un centre de symétrie O si elle est transformée

en elle-même, à l’ordre des sommets près, par la symétrie de centre O.

Par exemple tout point O d’une droite d est un centre de symétrie de cette droite.

Le point d’intersection O de deux droites concourantes est un centre de symétrie de

la croix.
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O

Voici les propriétés essentielles de la symétrie centrale. C’est pour cette raison

que l’étude du parallélisme est liée à celle des symétries centrales.

Proposition 2.3. Toute symétrie centrale SO : Π −→ Π est son propre inverse.

De plus SO transforme toute droite passant par O en elle-même et toute droite ne

passant pas par le centre O en une droite qui lui est parallèle.

DéMONSTRATION.
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3. Le théorème de la transversale

Nous arrivons au point culimnant de ce chapitre, le théorème de la transversale.

Nous avons vu que des angles opposés sont isométriques. Nous allons ajouter d’autres

angles à notre panoplie d’angles isométriques.

Définition 3.1. Soient a et b deux droites distinctes. Une transversale (relative-

ment à a et b) est une droite t coupant a et b de sorte que a, b et t ne soient pas

concourantes.

Une transversale détermine huit angles que nous allons souvent repérer grâce à

la numérotation suivante :

12

3 4

56
7 8

a

b

t

Angles alternes-internes : 1 et 7, 2 et 8

Angles alternes-externes : 3 et 5, 4 et 6

Angles correspondants : 1 et 5, 2 et 6, 3 et 7, 4 et 8
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Théorème 3.2. de la transversale. Lorsqu’une transversale coupe deux pa-

rallèles, deux des huit angles sont isométriques dès qu’ils sont alternes-internes,

alternes-externes ou correspondants.

12
3 4

56
7 8

a

b

t

A

B

Démonstration. Soit t une transversale coupant deux parallèles a et b en A

et B respectivement.

Soit O le milieu du segment [AB]. On montre que O est un centre de symétrie de

la figure formée des trois droites t, a et b. Comme elle transforme les angles alternes-

internes et alternes-externes entre eux, on aura fini la démonstration. Le point O est

un centre de symétrie de t puisque t passe par O et SO transforme t en t. On montre

maintenant que SO(a) = b.
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□

Il s’agit d’un « si et seulement si » dans le Théorème de la transversale. C’est-à-

dire que si la conclusion du théorème est vraie, alors son hypothèse est vérifiée.

Théorème 3.3. de la transversale, réciproque. Lorsque deux droites déter-

minent avec une transversale deux angles alternes-internes (ou alternes-externes, ou

correspondants) isométriques, elles sont parallèles.

Ainsi, le Théorème de la transversale nous servira à connaître certains angles lors-

qu’ils se trouvent en position alterne-interne, etc. pour une paire de droites parallèles,

alors que la réciproque nous permettra de savoir que deux droites sont parallèles si

les angles alternes-internes sont isométriques par exemple. Pour terminer nous fai-

sons une observation apparemment anodine sur les transversales de deux droites

parallèles. Nous en aurons besoin plus tard.

Proposition 3.4. Toute droite coupant l’une de deux parallèles coupe aussi l’autre.

Démonstration. Soient a et b des droites parallèles, d une droite coupant a

en A (en particulier, a ̸= d). Prouvons que d coupe b. La droite d ne peut pas être

parallèle à b, car par l’axiome des parallèles, il existe une unique parallèle à b passant

par A et ce doit donc être a. De plus, la droite d ne peut pas être confondue avec la

droite b, car la droite d contient le point A, tandis que la droite b non (car elle est

parallèle à a par hypothèse). □

ILLUSTRATION.
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4. Propriétés des parallèles

Nous verrons en particulier une caractérisation des parallèles en tant que lieu

géométrique.

Proposition 4.1. Soient deux droites parallèles. Toute droite perpendiculaire à l’une

est aussi perpendiculaire à l’autre.

DéMONSTRATION. Soient e et f deux droites parallèles et g une droite perpen-

diculaire à e. Deux droites perpendiculaires se coupent toujours.

e

f

Remarque 4.2. Une preuve alternative et plus courte utilise le résultat de la série

précédente que les isométries préservent la perpendicularité. Elle commence de la
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même manière. Soient e et f deux droites parallèles et g une droite perpendiculaire

à e. Deux droites perpendiculaires se coupent toujours, si bien que la droite g coupe

la droite e en un point P . Par la proposition précédente, la droite g coupe aussi la

droite f , disons en R. Soit M le milieu du segment [PR].

e

R

f

g

P

M

La symétrie de centre M transforme la croix eg en la croix fg. En effet, par une

proposition précédente, la droite g est préservée car elle contient M et la droite e

est transformée en une droite qui lui est parallèle, passant par R ; c’est donc f par

l’axiome des parallèles. Comme les isométries préservent la perpendicularité, la croix

fg est droite.

La définition de parallèle ne fait pas intervenir la notion de distance, on ne

demande aux deux droites que d’êtres disjointes, de n’avoir aucun point en commun.

Nous démontrons maintenant une propriété qui décrit presque la parallèle comme

un lieu géométrique.

Proposition 4.3. Soient a et b deux droites parallèles. Tous les points de a sont à

égale distance de b. De même, tous les points de b sont à égales distance de a. De

plus, ces deux distances sont égales.

DéMONSTRATION. Soient a et b des droites parallèles et A et A′ deux points

distincts sur a. Nous allons démontrer que la distance de A à b est la même que celle

de A′ à b. Puisque le rôle des droites a et b n’a pas d’importance, cela démontrera

la proposition.
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Soient p et p′ les perpendiculaires à a passant par A et A′ respectivement. Soit d

la médiatrice du segment [AA′].

A

A′

a

p

p′d

B

b

B′
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Cette proposition justifie la définition suivante puisque les choix à faire n’ont

aucune influence sur le résultat.

Définition 4.4. La distance de deux parallèles est la distance de n’importe quel

point d’une des droites à l’autre droite.

Nous arrivons enfin à la description du lieu géométrique. Observons que l’on ne

décrit pas une parallèle, mais deux !

Proposition 4.5. Il existe exactement deux parallèles à une distance r > 0 donnée

d’une droite d donnée. De plus, ces deux droites sont le lieu géométrique des points

du plan qui sont à la distance r de la droite d.



Chapitre 5

La mesure des angles

La mesure des distances a été fixée par des axiomes. Nous verrons dans ce chapitre

que la possibilité de mesurer des angles en découle, il n’est pas nécessaire d’ajouter

un axiome supplémentaire. Pour ce faire nous révisons rapidement la terminologie

utilisée pour les angles rectilignes et l’adaptons au contexte des angles plans car ce

sont eux que nous pouvons mesurer. En effet un angle rectiligne détermine deux

angles plans distincts, de mesures distinctes. Nous démontrerons ensuite le fameux

théorème de la somme des angles d’un triangle et étendrons ce résultat aux polygones

simples.

1. Terminologie sur les angles-plan

En général, la terminologie des angles rectilignes s’applique aux angles-plans

saillants, non pas rentrants.

Définition 1.1. L’angle rectiligne d’un angle-plan est appelé sa frontière. L’intérieur

d’un angle-plan est l’angle-plan sans sa frontière.

L’intérieur d’un angle-plan saillant non plat est l’intérieur de sa frontière. L’in-

térieur d’un angle-plan plat est le demi-plan ouvert qu’il détermine. L’intérieur d’un

angle-plan rentrant est l’extérieur de sa frontière.

En général, on définit qu’un angle-plan vérifie une certaine propriété des angles

rectilignes si et seulement il est saillant et que sa frontière la vérifie. Ainsi, un angle-

plan est nul, plat, droit, aigu ou obtus si c’est un angle-plan saillant dont la frontière

est un angle rectiligne respectivement nul, plat, droit, aigu ou obtus. Un angle-plan

est dit plein si c’est un angle-plan rentrant dont la frontière est un angle rectiligne

nul. Colorie ou hachure les intérieurs des angles plans ci-dessous sachant que celui

de sommet A est saillant et celui de sommet F est rentrant.
51
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A

E

F

Ce n’est pas suffisant de dire que deux angles-plans saillants sont adjacents si et

seulement si leurs frontières le sont. Il faut encore préciser la position relative des

intérieurs. Ainsi, deux angles-plans sont dits adjacents si leurs frontières sont adja-

centes et si leurs intérieurs sont disjoints. La somme de deux angles-plans adjacents

α et β, notée α + β, est l’angle-plan formé de la réunion des deux angles.

On dit que deux angles-plans saillants sont adjacents-supplémentaires si et seule-

ment si leurs frontières sont des angles adjacents-supplémentaires. En effet, ils sont

automatiquement d’intérieur disjoint dans ce cas.

Définition 1.2. Deux angles-plans sont adjacents-supplémentaires, resp. supplémen-

taires s’ils sont saillants et si leurs frontières sont des angles adjacents-supplémen-

taires, resp. supplémentaires.

Définition 1.3. Deux angles-plans sont adjacents-complémentaires s’ils sont ad-

jacents et que leur somme est un angle-plan droit. Ils sont complémentaires s’il

existe une isométrie transforme le premier en un angle adjacent-complémentaire au

deuxième.

Remarque 1.4. Deux angles-plans adjacents-complémentaires ont donc les proprié-

tés suivantes :

— Leurs frontières sont adjacentes et ils sont d’intérieur disjoints.

— Leur réunion doit être un angle-plan droit, soit un angle-plan saillant de fron-

tière droite. On en conclut que les deux angles-plans de départ devaient éga-

lement être saillants (et aigus ou droits).
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— En conclusion, deux angles-plans adjacents ont leur côté commun compris à

l’intérieur de l’angle rectiligne formé par leurs côtés non communs, qui est

droit.

2. Les degrés

Si la mesure des distances se fait avec une règle graduée, la mesure des angles

se fait avec un rapporteur, c’est-à-dire un cercle gradué. Nous reviendrons à cette

question l’année prochaine, lorsque vous étudierez le nombre π. Voici un rapporteur

étalonné en degrés et en radians :

Proposition 2.1. Il existe une unique manière de faire correspondre à tout angle-

plan α un nombre réel m(α), appelé la mesure de α, tel que :

(1) 0 ≤ m(α) ≤ 2 · 180 = 360.

(2) m(α) = m(β) ⇐⇒ α est isométrique à β.

(3) m(α) +m(β) = 180 ⇐⇒ α et β sont supplémentaires.

(4) m(α+ β) = m(α) +m(β) si α et β sont adjacents.

Le choix du nombre 180 est arbitraire (parmi les nombres strictement positifs).

La mesure associée à ce choix est dite mesure en degrés. Si dans cette définition on

remplace le nombre 180 par 200 ou par π, on obtient respectivement la mesure en

grades et en radians. Le nombre π est défini comme étant la longueur du demi-arc de

cercle de rayon 1. Il vaut environ 3,141592654, mais ce n’est pas un nombre rationnel.

Pour indiquer que l’on travaille en degrés, on place le symbole ° après le nombre.

S’il n’y a pas de risque de confusion, on notera de la même manière un angle et sa
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mesure. Par exemple, si l’angle α a une mesure de 30°, on notera α = 30°. Sur la base

des propriétés élémentaires décrites dans la proposition, faisons quelques calculs.
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Exemple 2.2.

3. Les polygones simples

Un polygone est une ligne polygonale qui se termine là où elle a commencé.

Nous avions introduit la notation A0A1A2 . . . An pour un tel objet. On ne note que

les sommets A0, A1, etc. et on sous-entend que le polygone est aussi constitué des

segments [A0A1], [A1, A2] etc.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O
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Définition 3.1. Un polygone est simple si chacun de ses points satisfait à l’une ou

l’autre de ces conditions :

(1) Ce point est un sommet et il n’appartient qu’à deux côtés.

(2) Ce point n’appartient qu’à un seul côté.

Dans la suite, sauf mention du contraire, tous les polygones seront supposés

simples. Parmi les polygones ci-dessus, lesquels sont simples ?

Définition 3.2. Soit F un polygone. Un point P du plan est à l’intérieur de F

s’il n’est pas sur F et si toute demi-droite issue de P qui évite les sommets de

F intersecte un nombre impair de côté de F . L’ensemble des points intérieurs du

polygone est l’intérieur de F . On appelle surface polygonale la réunion d’un polygone

et de son intérieur.

Le point q est-il à l’intérieur ou à l’extérieur du polygone ? Colorie l’intérieur

pour mieux visualiser la surface polygonale associée à ce polygone.

Définition 3.3. Soit F un polygone et A un sommet de F . L’angle en A du polygone

F est l’angle-plan dont les côtés sont les supports des côtés de F issus de A et qui

intersecte l’intérieur du polygone.
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Si l’angle en A est saillant, un angle extérieur en A est l’un des deux angles

adjacents supplémentaires de l’angle en A (ces deux angles sont isométriques car ils

sont opposés par le sommet).

Sur l’illustration suivante on voit les angles intérieurs du polygone ABCDEFGH

et un angle extérieur en E.

A

B

C

D

E

F

G

H

I

α = 34.22°

β = 94.87°

γ = 42.67°

δ = 295.52°

ε = 81.58°

ζ = 51.98°

η = 305.13°

θ = 34.2°

ι = 319.83°
κ = 98.42°

λ = 98.42°

4. Somme des angles d’un triangle

Nous commençons par montrer que la somme des angles d’un triangle vaut deux

angles droits. Nous passerons ensuite au cas d’un polygone ayant plus de trois som-

mets.

Théorème 4.1. La somme des mesures des angles d’un triangle vaut 180°.

DéMONSTRATION.
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Remarque 4.2. Ce théorème utilise implicitement l’axiome des parallèles, car on

l’a prouvé via le Théorème de la Transversale, qui lui-même est prouvé via l’axiome

des parallèles. En fait, l’axiome des parallèles est équivalent à l’affirmation que la

somme des angles d’un triangle vaut 180°. Autrement dit, on pourrait prendre cette

affirmation comme axiome et en dériver, cette fois comme théorème, l’« axiome »

des parallèles.

Remarque 4.3. En géométrie sphérique, l’axiome des parallèles n’est pas vérifié :

il n’y a pas de parallèle passant par un point hors d’une droite. Ceci peut paraître



5. SOMME DES ANGLES D’UN POLYGONE 59

contradictoire avec le fait (qui est une proposition, pas un axiome) qu’il existe au

moins une parallèle passant par un point hors d’une droite. Mais cette proposition

est basée sur tous les axiomes de la géométrie euclidienne, qui sont partiellement faux

en géométrie sphérique. En géométrie sphérique, la somme des angles d’un triangle

vaut toujours plus que 180°. Voici un exemple de triangle dont la somme des angles

vaut trois angles droits !

5. Somme des angles d’un polygone

Pour généraliser le théorème de la somme des angles d’un triangle nous devons

nous restreindre au cas des polygones simples. De fait nous ne ferons la preuve que

dans le cas des polygones simples et convexes, même si cette dernière hypothèse n’est

pas nécessaire.

Définition 5.1. Une figure F du plan est convexe si pour toute paire de points

distincts A et B de F , le segment [AB] est inclus dans F . Par abus de langage, on

dit qu’un polygone est convexe lorsque la surface polygonale associée est convexe.

A

B

A

B
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Corollaire 5.2. Soit F un polygone convexe à n côtés. Alors la somme des mesures

des angles de F vaut (n− 2) · 180°.

DéMONSTRATION. Soient A1, A2, . . . , An les n sommets de F . Considérons les

segments [A1Ai] pour chaque sommet Ai du polygone avec i = 3, . . . n− 1. Comme

F est convexe, ces segments sont entièrement contenus dans la surface polygonale

associée à F . Ceci découpe la surface polygonale en n − 2 triangles d’intérieurs

disjoints (sans preuve).

A1

A2 A3

A4

A5

A6
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Remarque 5.3. Ce corollaire est en fait vrai de manière plus générale pour tous

les polygones simples. La preuve est cependant plus difficile dans le cas général. Il

faut montrer que tout polygone simple admet une triangulation, i.e. un découpage

en triangles par les diagonales du polygone seulement, et que cette triangulation

consiste en n− 2 triangles.



Chapitre 6

Classification des isométries

Nous terminons le premier fascicule de géométrie avec la classification des isomé-

tries. Nos isométries de base sont les symétries axiales et nous verrons que toutes les

isométries peuvent être décrites en ne faisant appel qu’à ces symétries. Nous avons

déjà vu en exercice qu’une symétrie centrale est la composition de deux symétries

axiales, ce résultat paraît donc assez naturel. Par contre nous montrerons qu’en effec-

tuant au plus trois réflexions l’une après l’autre on obtient n’importe quelle isométrie

du plan !

1. Le groupe des isométries

Nous allons étudier les isométries en les comparant aux isométries les plus élé-

mentaires, celles que nous avons utilisées pour énoncer les axiomes de la géométrie

euclidienne : les symétries axiales. Pour construire des isométries plus compliquées

on peut composer des isométries élémentaires, un peu comme les nombres entiers se

décomposent en produits de premiers.

Définition 1.1. Si f, g : Π → Π sont deux transformations du plan, leur composée

g ◦ f est aussi une transformation du plan, définie par (g ◦ f)(P ) = g(f(P )).

On compose deux transformations en effectuant l’une d’abord, puis l’autre après.

Proposition 1.2. La composée de deux isométries est une isométrie.

62
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Définition 1.3. Un groupe est un ensemble G, muni d’une opération (loi de com-

position interne) ⋆ : G × G → G qui associe à deux éléments a, b ∈ G un élément

a ⋆ b ∈ G, et d’un élément neutre e ∈ G vérifiant les axiomes suivantes :

(1) (Associativité) Pour tous a, b, c ∈ G, on a l’égalité (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) ;

(2) (Elément neutre) Pour tout a ∈ G, on a l’égalité a ⋆ e = a = e ⋆ a = a ;

(3) (Inverse) Pour tout a ∈ G, il existe un élément a−1 ∈ G tel que a ∗ a−1 =

a−1 ∗ a = e.

Exemple 1.4. Nous connaissons déjà des exemples de nature algébrique.

Proposition 1.5. L’ensemble des isométries du plan forme un groupe pour la com-

position, d’élément neutre la transformation identité Id.

Démonstration. Nous étudierons la composition de transformations, de fonc-

tions et d’applications en général dans le prochain thème et verrons qu’elle est asso-

ciative. L’élément neutre est clairement l’identité puisque la transformation identité

fixe tous les points du plan. Enfin, nous avons vu qu’une isométrie f est injective

et surjective. Cela signifie que pour tout point P ∈ Π, il existe un seul point Q du

plan tel que f(Q) = P . On définit alors la transformation f−1 : Π → Π en posant

f−1(P ) = Q. Cette transformation est une isométrie parce que f en est une et par

définition f−1 ◦ f = Id = f ◦ f−1. □

2. Composition de symétries

Notre programme est de montrer que l’image par une isométrie de trois points non

alignés détermine complètement cette isométrie, puis de voir que cela nous permet

de construire toute isométrie en trois coups (de miroir).

Lemme 2.1. Une isométrie qui laisse fixe les sommets d’un triangle laisse fixe tout

le plan (c’est donc l’identité).
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Démonstration. Soit ∆ABC un triangle et f une isométrie. Supposons que f

laisse fixe les trois points A, B et C. Comme f laisse fixe les points A et B (qui sont

distincts), elle laisse fixe tous les points de la droite AB (car les isométries envoient

les droites sur des droites, et par les axiomes de la distance, notamment (D4) qui

dit que l’inégalité triangulaire est une égalité si et seulement si le troisième point se

trouve entre A et B).

A

B

C

C′

Par l’axiome de symétrie, il n’existe que deux isométries laissant fixes les points

de la droite AB : l’identité et la réflexion d’axe AB et f doit être l’une ou l’autre.

Par définition d’un triangle, le point C ne se trouve pas sur la droite AB et donc

SAB ne le laisse pas fixe (il est envoyé de l’autre côté de AB). Donc f doit être

l’identité. □

Convention 2.2. Dans la suite, pour simplifier le langage, on dira que deux triangles

∆ABC et ∆A′B′C ′ sont isométriques s’ils sont isométriques sous une isométrie qui

transforme A en A′, B en B′ et C en C ′. L’ordre des sommets est donc important

et souvent leurs noms nous permettra de savoir quel ordre nous choisissons !

Lemme 2.3. Soient ABC et A′B′C ′ des triangles isométriques. Alors il existe une

unique isométrie qui transforme A en A′, B en B′ et C en C ′.
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DéMONSTRATION.

Nous apprenons donc que toute isométrie est entièrement déterminée par son

action sur un triangle. Ceci signifie que si nous comprenons comment une isomé-

trie donnée transforme trois points non alignés, alors nous connaissons tout de cette

isométrie et savons en particulier construire l’image d’un point arbitraire. Les dé-

monstrations de cette section nous expliquent non seulement pourquoi les théorèmes

sont vrais, elles nous donnent aussi une méthode pour décrire une isométrie qui nous

serait donnée par exemple en indiquant un triangle et son image.

Définition 2.4. On dit qu’une isométrie est la composée de zéro réflexion si elle est

égale à l’identité. Elle est la composée d’une réflexion si c’est une réflexion.

Deux segments sont de même longueur si et seulement s’ils sont isométriques.

Mieux, nous allons déterminer combien d’isométries transforment l’un en l’autre.

Lemme 2.5. Soient [AB] et [CD] deux segments de même longueur. Alors, il existe

exactement deux isométries transformant A en C et B en D, l’une s’obtenant de

l’autre en la post-composant par la réflexion d’axe CD ou en la pré-composant par

la réflexion d’axe AB. De plus, il est toujours possible d’obtenir une telle isométrie

en composant 0, 1 ou 2 réflexions.
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DéMONSTRATION. Nous commençons par montrer l’existence d’une telle isomé-

trie et la construisons comme composition d’au maximum deux symétries axiales. Si

A = C et B = D, alors l’identité est une telle isométrie. Supposons maintenant que

A = C ou B = D, mais pas les deux, (disons A ̸= C).

A

C

B

Si A ̸= C et B ̸= D, alors on fait en sorte de se retrouver dans l’une ou l’autre

des situations précédentes.

A

B

C

D
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Nous devons maintenant prouver qu’il existe exactement deux telles isométries.

Prenons un point P qui n’est pas sur la droite AB de sorte à former un triangle

∆ABP . Les hypothèses de l’axiome de construction d’un triangle s’appliquent pour

la base [CD] et les longueurs AP et BP . Il existe donc exactement deux triangles

∆CDR et ∆CDS avec AP = CR = CS et BP = DR = DS.

A

B

C

D

P

R

S

Soit f une isométrie qui transforme [AB] en [CD]. Alors f transforme P en un

point P ′ vérifiant les mêmes propriétés que R et S. Par l’axiome de construction des

triangles, P ′ doit être égal à R ou S. Si f transforme P en R, alors la composée

SDC ◦ f avec la réflexion d’axe DC transforme P en S. De plus, c’est aussi une

isométrie qui transforme [AB] en [CD] et elle est distincte de f .

Ainsi, on sait qu’il existe au moins deux isométries transformant A en C et B

en D. Montrons maintenant qu’il n’en existe pas plus. On vient de voir que toute

isométrie qui transforme [AB] en [CD] transforme le triangle ∆ABP soit en ∆CDR

soit en ∆CDS.
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Théorème 2.6. de classification des isométries du plan. Toute isométrie

peut-être obtenue par la composée d’au plus trois réflexions (0, 1, 2 ou 3).

DéMONSTRATION.

3. Les rotations

Comme illustration du Théorème de classification nous étudions les rotations.

Nous souhaitons donc comprendre en particulier comment une rotation se décompose

en produit de symétries. Pour commencer nous devons donner une définition précise

et rigoureuse de ce qu’est une rotation.

Définition 3.1. Une rotation est une isométrie qui, soit est l’identité (la rotation

triviale ou nulle), soit fixe un unique point O du plan (rotation non triviale). Ce

point O s’appelle le centre de la rotation. N’importe quel point peut être considéré

comme le centre de la rotation nulle.

Exemple 3.2. Un symétrie centrale de centre O est une rotation de centre O. Une

réflexion n’est pas une rotation car elle fixe tout une droite.
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Par définition une rotation est une isométrie qui n’a qu’un seul point fixe. Le

Théorème de classification des isométries garantit que les rotations peuvent s’expri-

mer comme composition de réflexions (au plus trois). Combien de réflexions faut-il

et quelle est la position relative des axes ?

Proposition 3.3. Une isométrie est une rotation si et seulement si c’est la composée

de deux réflexions d’axes ayant au moins un point commun.

Démonstration. Soit R une rotation. Si c’est l’identité, alors elle est la com-

posée Sa ◦ Sa pour n’importe quelle droite a. Sinon, soient O son centre et A un

point du plan. Soit A′ = R(A).

A

A′

O
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Inversement, soient a et b des droites ayant au moins un point en commun. Si

elles en ont au moins deux, alors elles sont égales et Sb ◦ Sa est la transformation

identité. Supposons maintenant qu’elles sont distinctes et concourent en un point O.

La composée Sb ◦Sa laisse fixe le point O. Il reste à voir qu’elle ne laisse aucun autre

point du plan fixe. Soit P un point, P ′ son image sous Sa et P ′′ son image sous Sb.

On suppose que P ′′ = P et on en conclut que P = O.

Si P ̸= P ′ alors a est la médiatrice de P et P ′. Comme P ′′ = P , b est aussi la

médiatrice de P et P ′. Cela contredit le fait a et b sont des droites distinctes. Nous

en déduisons que P et P ′ doivent être égaux. Mais, alors P doit être sur a et comme

par hypothèse P ′′ = P et donc P ′′ = P ′, P ′ doit être sur b. Par conséquent, P = O,

puisque c’est le seul point commun de a et b par hypothèse. □

Remarque 3.4. Nous avons vu dans la preuve que si la rotation considérée est

l’identité, alors les deux axes de l’énoncé ci-dessus sont égaux à une même droite

quelconque du plan. Si ce n’est pas l’identité et si O est le centre, alors les axes

passent par O et on peut choisir librement le premier ou le deuxième axe parmi

les droites passant par O. En effet, les axes doivent passer par O, puisqu’on a vu

qu’une composée Sb ◦Sa ne fixe que le point d’intersection de a et b. On peut choisir

librement le premier axe a passant par O, choisir un point A sur a et suivre la

procédure expliquée au début de la preuve pour construire l’axe b. On peut aussi

choisir librement le deuxième axe b et on obtient le premier axe a de la manière

suivante. Soit b une droite passant par O et soit A′ sur b. Soit A l’image inverse de

A′ par R. Nommons a la médiatrice de [AA′]. Alors par le même argument qu’au

début de la preuve, R = Sb ◦ Sa.

ILLUSTRATION.
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Pour faire le lien avec le point de vue adopté ici et celui que l’on a usuellement

dans un cours de géométrie plane, nous devons encore travailler un peu pour pouvoir

parler de l’angle d’une rotation.

Corollaire 3.5. Soient A et B des points équidistants d’un point O et distincts de O.

Alors il existe une unique rotation de centre O qui transforme A en B.

Démonstration. Existence : Si A = B, alors on peut prendre l’identité. Sinon,

considérons a = OA et b la médiatrice de [AB]. La composée Sb ◦Sa est une rotation

de centre O par la proposition précédente et elle transforme bien A en B.

Unicité : Si A = B, alors l’identité est la seule rotation qui transforme A en B,

car les autres rotations laissent fixe seulement le point O. Sinon, il existe une unique

isométrie qui transforme O en O et A en B et qui est une rotation par le même

argument qu’au début de la preuve de la Proposition 3.3. □

Corollaire 3.6. La composée de rotations de centre O est une rotation de centre O

et l’inverse d’une rotation de centre O en est aussi une. De plus, cette composition

est commutative, c’est-à-dire si R et R′ sont des rotations de centre O, alors

R′ ◦ R = R ◦R′.

Ainsi, les rotations forment un groupe abélien pour la composition, qui est un « sous-

groupe » du groupe des isométries du plan.

Nous ne donnons pas la preuve ici de ce résultat un peu formel.

Définition 3.7. Un angle-plan est orienté si on a choisi un ordre de ses côtés. Un

angle plan peut donc avoir deux orientations, qu’on appelle positive et négative.

Elle est positive si un arc coupé par l’angle est parcouru dans le sens inverse des

aiguilles d’une montre (sens trigonométrique) lorsqu’on va du premier côté vers le

deuxième, négative sinon.
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La mesure d’un angle orienté est la mesure de l’angle avec un signe + s’il est

orienté positivement, un signe − sinon. On précise l’orientation par l’ordre des

lettres : Sab et Sba sont les mêmes angles-plans, mais d’orientation opposée (rap-

pelons que la notation Sab est par contre ambiguë au niveau de l’angle-plan : si

l’angle n’est pas plat, alors elle représente, par convention, l’angle-plan saillant. Si

l’angle-plan est plat, alors cette notation ne suffit pas à déterminer de quel angle on

parle).

Définition 3.8. On dit qu’une transformation préserve (resp. inverse) l’orientation

si elle préserve (resp. inverse) l’orientation de tous les angles. Les réflexions inversent

l’orientation.

+
-

-

Remarque 3.9. Par conséquent, toute composée d’un nombre pair de réflexions

préserve l’orientation et toute composée d’un nombre impair de réflexions inverse

l’orientation. En particulier, les rotations préservent l’orientation.

Proposition 3.10. Soit R une rotation de centre O. Alors la mesure et l’orientation

de l’angle orienté ’POP ′ où P ′ = R(P ) ne dépendent pas du choix du point P ̸= O.

Démonstration. Soient A et B deux points distincts de O, A′ et B′ leurs

images respectives sous R. On montre que les angles orientés ’AOA′ et ÷BOB′ sont

isométriques par une rotation (ils ont donc même mesure et même orientation).

Par le Corollaire 3.5, il existe une rotation R′ de centre O qui transforme la

demi-droite [OA en la demi-droite [OB. On montre que l’image de la demi-droite

[OA′ sous R′ est la demi-droite [OB′. En effet on calcule l’image de la demi-droite

[OA′ à l’aide du Corollaire 3.6 :
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R′([OA′) = R′ ◦ R([OA) = R ◦R′([OA) = R([OB) = [OB′

En conclusion, la rotation R′ transforme l’angle orienté ’AOA′ en l’angle orienté÷BOB′. □

ILLUSTRATION.

Définition 3.11. Soit R une rotation de centre O, P un point différent de O et

P ′ = R(P ). Alors la mesure de l’angle orienté ’POP ′ s’appelle l’amplitude de la

rotation R et son orientation le sens de la rotation.

Une rotation est donc complètement déterminée par son centre O et son angle

(orienté !) de rotation α. On la note souvent R(O,α).

Exemple 3.12. On se donne un triangle ∆ABC et son image ∆A′B′C ′ par une ro-

tation R. Comment trouver le centre O de cette rotation et son angle α de rotation ?

La première question est résolue grâce au fait que nous savons que R est composée

de deux symétries dont les axes a et b se coupent en O. Une fois que le premier axe

est choisi, le deuxième est imposé (ou vice-versa).
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A

B

C

A′

B′

C′
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